Iodine application induces the antioxidant defense system, alleviates salt stress, reduces nitrate content, and increases the nutritional value of lettuce plants.
{"title":"Iodine application induces the antioxidant defense system, alleviates salt stress, reduces nitrate content, and increases the nutritional value of lettuce plants.","authors":"Osama Abdelsalam Shalaby","doi":"10.1071/FP24273","DOIUrl":null,"url":null,"abstract":"<p><p>In light of climate change, improving plant resilience to abiotic stress is essential. Iodine application can improve plant tolerance to abiotic stress and provide humans with a nutritious diet rich in iodine and antioxidants. A field experiment was conducted on lettuce plants grown in a saline environment with four levels of foliar iodine spray (0, 3, 6, and 9mg/L potassium iodate). Lettuce plants respond to iodine in a concentration-dependent manner, with low iodine concentrations increasing their antioxidant capacity, reducing the amount of toxic compounds, improving their nutritional status, maintaining their physiological balance, and stimulating plant growth and yield. Conversely, high iodine levels disrupt physiological processes and reduce productivity. However, lettuce plants sprayed with 3mg/L iodine presented relatively high levels of antioxidant enzymes (catalase, superoxide dismutase, and ascorbate peroxidase), nonenzymatic antioxidants (vitamin C, proline, and phenols), chlorophyll, and nutrients, as well as relatively low levels of malondialdehyde, H2 O2 , and Na, resulting in increased head weight and total yield and reduced nitrate content. Thus, while low levels of iodine can increase plant resilience to adverse conditions such as salt stress, high levels can be detrimental, leading to reduced growth and yield. The higher the concentration of iodine used, the greater the inhibitory effect on plants.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24273","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In light of climate change, improving plant resilience to abiotic stress is essential. Iodine application can improve plant tolerance to abiotic stress and provide humans with a nutritious diet rich in iodine and antioxidants. A field experiment was conducted on lettuce plants grown in a saline environment with four levels of foliar iodine spray (0, 3, 6, and 9mg/L potassium iodate). Lettuce plants respond to iodine in a concentration-dependent manner, with low iodine concentrations increasing their antioxidant capacity, reducing the amount of toxic compounds, improving their nutritional status, maintaining their physiological balance, and stimulating plant growth and yield. Conversely, high iodine levels disrupt physiological processes and reduce productivity. However, lettuce plants sprayed with 3mg/L iodine presented relatively high levels of antioxidant enzymes (catalase, superoxide dismutase, and ascorbate peroxidase), nonenzymatic antioxidants (vitamin C, proline, and phenols), chlorophyll, and nutrients, as well as relatively low levels of malondialdehyde, H2 O2 , and Na, resulting in increased head weight and total yield and reduced nitrate content. Thus, while low levels of iodine can increase plant resilience to adverse conditions such as salt stress, high levels can be detrimental, leading to reduced growth and yield. The higher the concentration of iodine used, the greater the inhibitory effect on plants.
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.