Selenomethionine enhances transplant organ preservation by attenuating oxidative stress-induced proteolysis in rats.

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Paul Emir Hasuoka, Franco Tonelli, Leonardo Mariño-Repizo, Pablo Pacheco
{"title":"Selenomethionine enhances transplant organ preservation by attenuating oxidative stress-induced proteolysis in rats.","authors":"Paul Emir Hasuoka, Franco Tonelli, Leonardo Mariño-Repizo, Pablo Pacheco","doi":"10.1080/10715762.2025.2516844","DOIUrl":null,"url":null,"abstract":"<p><p>Selenomethionine (SeMet) increases glutathione peroxidase (GPx) activity, a seleno-enzyme with an antioxidant function that counteracts reactive oxygen species (ROS). After ablation, transplant organs generate ROS during irrigation-reperfusion injury. GPx1 can be downregulated during hypoxia in ablated organs. ROS can oxidize proteins, inducing proteolysis, which compromises the transplant outcome. SeMet administration to living donors can decrease proteolysis in transplant organs, improving their preservation. Accordingly, SeMet was administered to rats for 7 days. After this period, the liver, heart, and kidneys were ablated, and proteins extracted at different <i>postmortem</i> intervals (PMI). Total protein analysis showed a lower protein concentration decrease in kidneys and heart from SeMet-supplemented rats after a 6 hs PMI. Molecular weight changes of proteins to proteolysis products (PPs) were studied by size exclusion chromatography (SEC). SeMet decreased PPs (<29.5 kDa) in the liver, kidneys, and heart. Specific analysis of GPx1 proteolysis by affinity chromatography coupled to inductively coupled plasma mass spectrometry (AF-ICP-MS) showed that SeMet administration decreased GPx1 proteolysis 24% in the liver and 16.8% in the heart. SeMet administration reduced the proteolysis velocity of GPx1 (V<sub>GPx1</sub>) in heart. SeMet administration to living donors for seven days decreased proteolysis in transplant organs, improving its conservation.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"1-10"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2025.2516844","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Selenomethionine (SeMet) increases glutathione peroxidase (GPx) activity, a seleno-enzyme with an antioxidant function that counteracts reactive oxygen species (ROS). After ablation, transplant organs generate ROS during irrigation-reperfusion injury. GPx1 can be downregulated during hypoxia in ablated organs. ROS can oxidize proteins, inducing proteolysis, which compromises the transplant outcome. SeMet administration to living donors can decrease proteolysis in transplant organs, improving their preservation. Accordingly, SeMet was administered to rats for 7 days. After this period, the liver, heart, and kidneys were ablated, and proteins extracted at different postmortem intervals (PMI). Total protein analysis showed a lower protein concentration decrease in kidneys and heart from SeMet-supplemented rats after a 6 hs PMI. Molecular weight changes of proteins to proteolysis products (PPs) were studied by size exclusion chromatography (SEC). SeMet decreased PPs (<29.5 kDa) in the liver, kidneys, and heart. Specific analysis of GPx1 proteolysis by affinity chromatography coupled to inductively coupled plasma mass spectrometry (AF-ICP-MS) showed that SeMet administration decreased GPx1 proteolysis 24% in the liver and 16.8% in the heart. SeMet administration reduced the proteolysis velocity of GPx1 (VGPx1) in heart. SeMet administration to living donors for seven days decreased proteolysis in transplant organs, improving its conservation.

硒代蛋氨酸通过减弱大鼠氧化应激诱导的蛋白水解而增强移植器官保存。
硒代蛋氨酸(SeMet)增加谷胱甘肽过氧化物酶(GPx)活性,这是一种具有抗氧化功能的硒酶,可以抵消活性氧(ROS)。消融后移植器官在灌流-再灌注损伤过程中产生ROS。GPx1可在消融器官缺氧时下调。ROS可以氧化蛋白质,诱导蛋白质水解,从而影响移植结果。活体供体注射SeMet可减少移植器官的蛋白水解,改善其保存。据此,给大鼠注射SeMet 7 d。在这段时间后,肝脏、心脏和肾脏被切除,并在不同的死后时间间隔(PMI)提取蛋白质。总蛋白分析显示,在6小时的PMI后,补充semet的大鼠肾脏和心脏的蛋白质浓度下降较低。采用粒径排斥色谱法(SEC)研究了蛋白水解产物(PPs)的分子量变化。SeMet降低心脏PPs (GPx1)。活体供体给予7天SeMet可减少移植器官的蛋白水解,改善其保存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信