{"title":"An Overview of Novel Formulations For Ocular Viral Infections: Focused On Nanomedicines.","authors":"Shalu Verma, Nidhi Nainwal, Divya Juyal","doi":"10.1080/03639045.2025.2515998","DOIUrl":null,"url":null,"abstract":"<p><p>Ocular viral infections are a common cause of blindness globally. Many ocular viral infections are mistakenly identified as bacterial infections. In these situations, treatment is initiated belatedly and fails to address the root cause of the infection, which frequently results in serious ocular complications like corneal infiltrates, conjunctival scarring, and decreased visual acuity. The efficacy of conventional treatments for viral infections suffers from poor bioavailability, which requires the development of novel methods of drug delivery, accurate diagnosis, and efficient treatment choices. As nanotechnology in medicine advances at a rapid pace, multifunctional nanosystems are being prioritized more and more to address the problems brought on by viral infections of the eyes offering targeted delivery, increased bioavailability and decreased systemic toxicity. This study delivers a thorough overview of the use of nanomedicines in the treatment of ocular viral infections, with a particular emphasis on how they may enhance the safety and efficacy of antiviral drugs. We address a range of nanocarrier systems, such as liposomes, nanoparticles, nanosuspension, proniosomes, in-situ gels, dendrimers, and nanogels, emphasizing their distinct characteristics that facilitate the effective transportation of antiviral drugs to ocular tissues. This article also highlighted the regulatory barriers of ocular nanoformulation. The transition of <i>in-vitro</i> studies to <i>in-vivo</i> and clinical models has been discussed. This review also highlights the Preclinical studies of ocular viral treatment, ocular nanotoxicology and advancement of ocular antiviral treatments in the form of patents, ongoing clinical trials and marketed formulations.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-45"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2025.2515998","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ocular viral infections are a common cause of blindness globally. Many ocular viral infections are mistakenly identified as bacterial infections. In these situations, treatment is initiated belatedly and fails to address the root cause of the infection, which frequently results in serious ocular complications like corneal infiltrates, conjunctival scarring, and decreased visual acuity. The efficacy of conventional treatments for viral infections suffers from poor bioavailability, which requires the development of novel methods of drug delivery, accurate diagnosis, and efficient treatment choices. As nanotechnology in medicine advances at a rapid pace, multifunctional nanosystems are being prioritized more and more to address the problems brought on by viral infections of the eyes offering targeted delivery, increased bioavailability and decreased systemic toxicity. This study delivers a thorough overview of the use of nanomedicines in the treatment of ocular viral infections, with a particular emphasis on how they may enhance the safety and efficacy of antiviral drugs. We address a range of nanocarrier systems, such as liposomes, nanoparticles, nanosuspension, proniosomes, in-situ gels, dendrimers, and nanogels, emphasizing their distinct characteristics that facilitate the effective transportation of antiviral drugs to ocular tissues. This article also highlighted the regulatory barriers of ocular nanoformulation. The transition of in-vitro studies to in-vivo and clinical models has been discussed. This review also highlights the Preclinical studies of ocular viral treatment, ocular nanotoxicology and advancement of ocular antiviral treatments in the form of patents, ongoing clinical trials and marketed formulations.
期刊介绍:
The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.