Conditional probabilistic-based domain adaptation for cross-subject EEG-based emotion recognition.

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-06-03 DOI:10.1007/s11571-025-10272-8
Shichao Cheng, Yifan Wang, Jiawei Mei, Guang Lin, Jianhai Zhang, Wanzeng Kong
{"title":"Conditional probabilistic-based domain adaptation for cross-subject EEG-based emotion recognition.","authors":"Shichao Cheng, Yifan Wang, Jiawei Mei, Guang Lin, Jianhai Zhang, Wanzeng Kong","doi":"10.1007/s11571-025-10272-8","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalogram (EEG)-based emotion recognition has received increasing attention in affective computing. Due to the non-stationary and non-linear characteristics of EEG signals, EEG data exhibit significant individual differences. Previous studies have adopted domain adaptation strategies to minimize the distribution gap between individuals and achieved reasonable results. However, due to ignoring the influence of individual-dependent background signals on task-dependent emotional signals, most of the research can only align source domain data and target domain data spatially as a whole. There may be confusion between categories. Based on this limitation, this paper proposes a conditional probabilistic-based domain adversarial network (CPDAN) for cross-subject EEG-based emotion recognition. According to the characteristics of cross-subject EEG signals, CPDAN uses different branch networks to separate the background features and task features from EEG signals. In addition, CPDAN uses domain-adversarial training to model the discrepancy in the global domain and local domain to reduce the intra-class distance and enlarge the inter-class distance. The extensive experiments on SEED and SEED-IV demonstrate that our proposed CPDAN framework outperforms the comparison methods. Especially on SEED-IV, the average accuracy of CPDAN has improved by 22% over the comparison method.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"84"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133656/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10272-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Electroencephalogram (EEG)-based emotion recognition has received increasing attention in affective computing. Due to the non-stationary and non-linear characteristics of EEG signals, EEG data exhibit significant individual differences. Previous studies have adopted domain adaptation strategies to minimize the distribution gap between individuals and achieved reasonable results. However, due to ignoring the influence of individual-dependent background signals on task-dependent emotional signals, most of the research can only align source domain data and target domain data spatially as a whole. There may be confusion between categories. Based on this limitation, this paper proposes a conditional probabilistic-based domain adversarial network (CPDAN) for cross-subject EEG-based emotion recognition. According to the characteristics of cross-subject EEG signals, CPDAN uses different branch networks to separate the background features and task features from EEG signals. In addition, CPDAN uses domain-adversarial training to model the discrepancy in the global domain and local domain to reduce the intra-class distance and enlarge the inter-class distance. The extensive experiments on SEED and SEED-IV demonstrate that our proposed CPDAN framework outperforms the comparison methods. Especially on SEED-IV, the average accuracy of CPDAN has improved by 22% over the comparison method.

基于条件概率的跨主体脑电图情感识别领域自适应。
基于脑电图的情感识别在情感计算领域受到越来越多的关注。由于脑电信号的非平稳性和非线性特征,脑电信号数据存在显著的个体差异。以往的研究都采用领域适应策略来减小个体间的分布差距,并取得了合理的结果。然而,由于忽略了个体依赖的背景信号对任务依赖的情绪信号的影响,大多数研究只能将源域数据和目标域数据在空间上作为一个整体进行对齐。类别之间可能存在混淆。基于这一局限性,本文提出了一种基于条件概率的领域对抗网络(CPDAN),用于基于脑电的跨主体情感识别。CPDAN根据跨主题脑电信号的特点,采用不同的分支网络分离脑电信号的背景特征和任务特征。此外,CPDAN还使用域对抗训练对全局域和局部域的差异进行建模,以减小类内距离和扩大类间距离。在SEED和SEED- iv上的大量实验表明,我们提出的CPDAN框架优于比较方法。特别是在SEED-IV上,CPDAN的平均准确率比比较方法提高了22%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信