{"title":"Multitask deep learning model based on multimodal data for predicting prognosis of rectal cancer: a multicenter retrospective study.","authors":"Qiong Ma, Runqi Meng, Ruiting Li, Ling Dai, Fu Shen, Jie Yuan, Danqi Sun, Manman Li, Caixia Fu, Rong Li, Feng Feng, Yonggang Li, Tong Tong, Yajia Gu, Yiqun Sun, Dinggang Shen","doi":"10.1186/s12911-025-03050-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Prognostic prediction is crucial to guide individual treatment for patients with rectal cancer. We aimed to develop and validated a multitask deep learning model for predicting prognosis in rectal cancer patients.</p><p><strong>Methods: </strong>This retrospective study enrolled 321 rectal cancer patients (training set: 212; internal testing set: 53; external testing set: 56) who directly received total mesorectal excision from five hospitals between March 2014 to April 2021. A multitask deep learning model was developed to simultaneously predict recurrence/metastasis and disease-free survival (DFS). The model integrated clinicopathologic data and multiparametric magnetic resonance imaging (MRI) images including diffusion kurtosis imaging (DKI), without performing tumor segmentation. The receiver operating characteristic (ROC) curve and Harrell's concordance index (C-index) were used to evaluate the predictive performance of the proposed model.</p><p><strong>Results: </strong>The deep learning model achieved good discrimination capability of recurrence/metastasis, with area under the curve (AUC) values of 0.885, 0.846, and 0.797 in the training, internal testing and external testing sets, respectively. Furthermore, the model successfully predicted DFS in the training set (C-index: 0.812), internal testing set (C-index: 0.794), and external testing set (C-index: 0.733), and classified patients into significantly distinct high- and low-risk groups (p < 0.05).</p><p><strong>Conclusions: </strong>The multitask deep learning model, incorporating clinicopathologic data and multiparametric MRI, effectively predicted both recurrence/metastasis and survival for patients with rectal cancer. It has the potential to be an essential tool for risk stratification, and assist in making individualized treatment decisions.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"209"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143085/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-03050-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Prognostic prediction is crucial to guide individual treatment for patients with rectal cancer. We aimed to develop and validated a multitask deep learning model for predicting prognosis in rectal cancer patients.
Methods: This retrospective study enrolled 321 rectal cancer patients (training set: 212; internal testing set: 53; external testing set: 56) who directly received total mesorectal excision from five hospitals between March 2014 to April 2021. A multitask deep learning model was developed to simultaneously predict recurrence/metastasis and disease-free survival (DFS). The model integrated clinicopathologic data and multiparametric magnetic resonance imaging (MRI) images including diffusion kurtosis imaging (DKI), without performing tumor segmentation. The receiver operating characteristic (ROC) curve and Harrell's concordance index (C-index) were used to evaluate the predictive performance of the proposed model.
Results: The deep learning model achieved good discrimination capability of recurrence/metastasis, with area under the curve (AUC) values of 0.885, 0.846, and 0.797 in the training, internal testing and external testing sets, respectively. Furthermore, the model successfully predicted DFS in the training set (C-index: 0.812), internal testing set (C-index: 0.794), and external testing set (C-index: 0.733), and classified patients into significantly distinct high- and low-risk groups (p < 0.05).
Conclusions: The multitask deep learning model, incorporating clinicopathologic data and multiparametric MRI, effectively predicted both recurrence/metastasis and survival for patients with rectal cancer. It has the potential to be an essential tool for risk stratification, and assist in making individualized treatment decisions.
期刊介绍:
BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.