Multitask deep learning model based on multimodal data for predicting prognosis of rectal cancer: a multicenter retrospective study.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS
Qiong Ma, Runqi Meng, Ruiting Li, Ling Dai, Fu Shen, Jie Yuan, Danqi Sun, Manman Li, Caixia Fu, Rong Li, Feng Feng, Yonggang Li, Tong Tong, Yajia Gu, Yiqun Sun, Dinggang Shen
{"title":"Multitask deep learning model based on multimodal data for predicting prognosis of rectal cancer: a multicenter retrospective study.","authors":"Qiong Ma, Runqi Meng, Ruiting Li, Ling Dai, Fu Shen, Jie Yuan, Danqi Sun, Manman Li, Caixia Fu, Rong Li, Feng Feng, Yonggang Li, Tong Tong, Yajia Gu, Yiqun Sun, Dinggang Shen","doi":"10.1186/s12911-025-03050-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Prognostic prediction is crucial to guide individual treatment for patients with rectal cancer. We aimed to develop and validated a multitask deep learning model for predicting prognosis in rectal cancer patients.</p><p><strong>Methods: </strong>This retrospective study enrolled 321 rectal cancer patients (training set: 212; internal testing set: 53; external testing set: 56) who directly received total mesorectal excision from five hospitals between March 2014 to April 2021. A multitask deep learning model was developed to simultaneously predict recurrence/metastasis and disease-free survival (DFS). The model integrated clinicopathologic data and multiparametric magnetic resonance imaging (MRI) images including diffusion kurtosis imaging (DKI), without performing tumor segmentation. The receiver operating characteristic (ROC) curve and Harrell's concordance index (C-index) were used to evaluate the predictive performance of the proposed model.</p><p><strong>Results: </strong>The deep learning model achieved good discrimination capability of recurrence/metastasis, with area under the curve (AUC) values of 0.885, 0.846, and 0.797 in the training, internal testing and external testing sets, respectively. Furthermore, the model successfully predicted DFS in the training set (C-index: 0.812), internal testing set (C-index: 0.794), and external testing set (C-index: 0.733), and classified patients into significantly distinct high- and low-risk groups (p < 0.05).</p><p><strong>Conclusions: </strong>The multitask deep learning model, incorporating clinicopathologic data and multiparametric MRI, effectively predicted both recurrence/metastasis and survival for patients with rectal cancer. It has the potential to be an essential tool for risk stratification, and assist in making individualized treatment decisions.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"209"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143085/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-03050-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Prognostic prediction is crucial to guide individual treatment for patients with rectal cancer. We aimed to develop and validated a multitask deep learning model for predicting prognosis in rectal cancer patients.

Methods: This retrospective study enrolled 321 rectal cancer patients (training set: 212; internal testing set: 53; external testing set: 56) who directly received total mesorectal excision from five hospitals between March 2014 to April 2021. A multitask deep learning model was developed to simultaneously predict recurrence/metastasis and disease-free survival (DFS). The model integrated clinicopathologic data and multiparametric magnetic resonance imaging (MRI) images including diffusion kurtosis imaging (DKI), without performing tumor segmentation. The receiver operating characteristic (ROC) curve and Harrell's concordance index (C-index) were used to evaluate the predictive performance of the proposed model.

Results: The deep learning model achieved good discrimination capability of recurrence/metastasis, with area under the curve (AUC) values of 0.885, 0.846, and 0.797 in the training, internal testing and external testing sets, respectively. Furthermore, the model successfully predicted DFS in the training set (C-index: 0.812), internal testing set (C-index: 0.794), and external testing set (C-index: 0.733), and classified patients into significantly distinct high- and low-risk groups (p < 0.05).

Conclusions: The multitask deep learning model, incorporating clinicopathologic data and multiparametric MRI, effectively predicted both recurrence/metastasis and survival for patients with rectal cancer. It has the potential to be an essential tool for risk stratification, and assist in making individualized treatment decisions.

Clinical trial number: Not applicable.

基于多模态数据的多任务深度学习模型预测直肠癌预后:一项多中心回顾性研究。
背景:预后预测对指导直肠癌患者的个体化治疗至关重要。我们旨在开发和验证一个多任务深度学习模型,用于预测直肠癌患者的预后。方法:本回顾性研究纳入321例直肠癌患者(训练集:212例;内测台:53台;2014年3月至2021年4月在5家医院直接行直肠全系膜切除术的患者56例。开发了一个多任务深度学习模型来同时预测复发/转移和无病生存(DFS)。该模型整合了临床病理数据和多参数磁共振成像(MRI)图像,包括弥散峰度成像(DKI),而不进行肿瘤分割。采用受试者工作特征(ROC)曲线和Harrell’s concordance index (C-index)评价模型的预测性能。结果:深度学习模型具有较好的复发/转移识别能力,在训练集、内部测试集和外部测试集上,AUC值分别为0.885、0.846和0.797。此外,该模型成功预测了训练集(C-index: 0.812)、内部测试集(C-index: 0.794)和外部测试集(C-index: 0.733)的DFS,并将患者分为明显不同的高危组和低危组(p)。结论:结合临床病理数据和多参数MRI的多任务深度学习模型可以有效预测直肠癌患者的复发/转移和生存。它有可能成为风险分层的基本工具,并有助于做出个性化的治疗决定。临床试验号:不适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信