Yuyuan He, Jinrong Zhou, Han Li, Lin Deng, Jinnan Gao
{"title":"Application of heterogeneous catalysts in the preparation of bio-based platform compound 5-hydroxymethylfurfural.","authors":"Yuyuan He, Jinrong Zhou, Han Li, Lin Deng, Jinnan Gao","doi":"10.1186/s40643-025-00894-5","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, there has been growing attention towards developing renewable energy and materials derived from abundant biomass resources. 5-Hydroxymethylfurfural (HMF) is recognized as a promising bio-based platform compound for synthesizing value-added chemicals and materials due to its versatile reactivity. HMF can be directly synthesized from carbohydrates and various raw biomass through the acid-hydrolysis reaction. Heterogeneous catalysts have gained prominence in biomass conversion owing to their environmental friendliness, facile separation from reaction mixtures, high catalytic efficiency, and reduced corrosivity toward equipment. This review systematically examines the reaction pathways and mechanisms involved in HMF synthesis from fructose, glucose, cellulose, and raw biomass using heterogeneous catalysts. Then we give an introduction to the preparation of furandicarboxylic acid (FDCA) from HMF with different catalytic methods. FDCA is an important degradable bio-material monomer for polyethylene furanoate to replace petroleum-based polyethylene terephthalate. This review ends with a prospect on the challenges and opportunities of HMF synthesis in the near future.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"55"},"PeriodicalIF":5.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12144019/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-025-00894-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, there has been growing attention towards developing renewable energy and materials derived from abundant biomass resources. 5-Hydroxymethylfurfural (HMF) is recognized as a promising bio-based platform compound for synthesizing value-added chemicals and materials due to its versatile reactivity. HMF can be directly synthesized from carbohydrates and various raw biomass through the acid-hydrolysis reaction. Heterogeneous catalysts have gained prominence in biomass conversion owing to their environmental friendliness, facile separation from reaction mixtures, high catalytic efficiency, and reduced corrosivity toward equipment. This review systematically examines the reaction pathways and mechanisms involved in HMF synthesis from fructose, glucose, cellulose, and raw biomass using heterogeneous catalysts. Then we give an introduction to the preparation of furandicarboxylic acid (FDCA) from HMF with different catalytic methods. FDCA is an important degradable bio-material monomer for polyethylene furanoate to replace petroleum-based polyethylene terephthalate. This review ends with a prospect on the challenges and opportunities of HMF synthesis in the near future.
期刊介绍:
Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology