{"title":"Data-driven discovery of chemical signatures for developing new inhibitors against human influenza viruses.","authors":"Levon Kharatyan, Smbat Gevorgyan, Hamlet Khachatryan, Anastasiya Shavina, Astghik Hakobyan, Mher Matevosyan, Hovakim Zakaryan","doi":"10.1186/s13065-025-01540-z","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents cheminformatics analysis of the antiviral chemical space targeting human influenza A and B viruses. By curating 407,366 small molecules from ChEMBL and PubChem, we evaluated physicochemical properties, structural motifs, and activity trends across phenotypic and target-based assays. We found that 90.6% of evaluated molecules met Lipinski's Rule of Five, with active compounds exhibiting higher topological polar surface area and hydrogen bond donor groups. Target-specific analyses revealed distinct profiles for neuraminidase (NA) and hemagglutinin (HA) inhibitors, including larger molecular weights and increased rotatable bonds. Structural characterization identified cyclohexene, dihydropyran, and pyrimidine rings as prevalent in highly active molecules, while phthalimide motifs correlated with inactivity. Clustering of phenotypic assay data highlighted four promising and unique antiviral candidates, with unexplored chemical space. We also identified five multi-target scaffolds, including the curcumin-like scaffold, demonstrating dual inhibitory potential against two viral proteins. Molecular docking experiments on molecules within one of these multi-target scaffolds indicated their potential as initial hit candidates. Combined RMSD, PDF and DCCM analyses across molecular dynamics simulations elucidated the binding behaviour of five curcumin-like candidates. Two ligands remained as stable as the reference antivirals, one showed target-specific loss of affinity, and two dissociated rapidly, indicating that the stable pair should be prioritised for subsequent in vitro validation. Overall, the findings of this study can aid computer-aided drug design efforts, contributing to the development of novel antiviral agents against human influenza viruses.</p>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":"159"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12139104/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s13065-025-01540-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents cheminformatics analysis of the antiviral chemical space targeting human influenza A and B viruses. By curating 407,366 small molecules from ChEMBL and PubChem, we evaluated physicochemical properties, structural motifs, and activity trends across phenotypic and target-based assays. We found that 90.6% of evaluated molecules met Lipinski's Rule of Five, with active compounds exhibiting higher topological polar surface area and hydrogen bond donor groups. Target-specific analyses revealed distinct profiles for neuraminidase (NA) and hemagglutinin (HA) inhibitors, including larger molecular weights and increased rotatable bonds. Structural characterization identified cyclohexene, dihydropyran, and pyrimidine rings as prevalent in highly active molecules, while phthalimide motifs correlated with inactivity. Clustering of phenotypic assay data highlighted four promising and unique antiviral candidates, with unexplored chemical space. We also identified five multi-target scaffolds, including the curcumin-like scaffold, demonstrating dual inhibitory potential against two viral proteins. Molecular docking experiments on molecules within one of these multi-target scaffolds indicated their potential as initial hit candidates. Combined RMSD, PDF and DCCM analyses across molecular dynamics simulations elucidated the binding behaviour of five curcumin-like candidates. Two ligands remained as stable as the reference antivirals, one showed target-specific loss of affinity, and two dissociated rapidly, indicating that the stable pair should be prioritised for subsequent in vitro validation. Overall, the findings of this study can aid computer-aided drug design efforts, contributing to the development of novel antiviral agents against human influenza viruses.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.