Interfacial Polarization Switching in Al0.92Sc0.08N/GaN Heterostructures Grown by Sputter Epitaxy.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Niklas Wolff, Georg Schönweger, Md Redwanul Islam, Ziming Ding, Christian Kübel, Simon Fichtner, Lorenz Kienle
{"title":"Interfacial Polarization Switching in Al<sub>0.92</sub>Sc<sub>0.08</sub>N/GaN Heterostructures Grown by Sputter Epitaxy.","authors":"Niklas Wolff, Georg Schönweger, Md Redwanul Islam, Ziming Ding, Christian Kübel, Simon Fichtner, Lorenz Kienle","doi":"10.1002/advs.202503827","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of ferroelectric nitride Al<sub>1-x</sub>Sc<sub>x</sub>N onto GaN templates can enable enhanced functionality in novel high-power transistors and memory devices. This requires a detailed understanding of ferroelectric domain structures and their impact on the electrical properties. In this contribution, the sputter epitaxy of highly coherent Al<sub>0.92</sub>Sc<sub>0.08</sub>N thin films grown on GaN approaching lattice-matching conditions is demonstrated. Scanning transmission electron microscopy (STEM) investigations reveal polar domains and the mechanism of domain propagation upon ferroelectric switching. Atomic resolution imaging suggests that polarization inversion commences by an interfacial switching process in which the monolayer next to the interface already changes its polarization from the as-grown M- to N-polarity. The atomic configurations of this planar polarization discontinuity are identified and systematic changes of the electronic structure are revealed by electron energy loss spectroscopy (EELS). Moreover, persistent domains with M-polarity are identified at the top Pt electrode interface after switching. These insights on the location and the atomic structure of ferroelectric domains in sputter deposited Al<sub>0.92</sub>Sc<sub>0.08</sub>N/GaN heterostructures are compared to metal organic chemical vapor deposition (MOCVD)-grown films and discussed with respect to their defect structure. This knowledge will support the development of future non-volatile memory devices and novel transistor structures based on ferroelectric nitride thin films via interface and defect engineering.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e03827"},"PeriodicalIF":14.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202503827","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of ferroelectric nitride Al1-xScxN onto GaN templates can enable enhanced functionality in novel high-power transistors and memory devices. This requires a detailed understanding of ferroelectric domain structures and their impact on the electrical properties. In this contribution, the sputter epitaxy of highly coherent Al0.92Sc0.08N thin films grown on GaN approaching lattice-matching conditions is demonstrated. Scanning transmission electron microscopy (STEM) investigations reveal polar domains and the mechanism of domain propagation upon ferroelectric switching. Atomic resolution imaging suggests that polarization inversion commences by an interfacial switching process in which the monolayer next to the interface already changes its polarization from the as-grown M- to N-polarity. The atomic configurations of this planar polarization discontinuity are identified and systematic changes of the electronic structure are revealed by electron energy loss spectroscopy (EELS). Moreover, persistent domains with M-polarity are identified at the top Pt electrode interface after switching. These insights on the location and the atomic structure of ferroelectric domains in sputter deposited Al0.92Sc0.08N/GaN heterostructures are compared to metal organic chemical vapor deposition (MOCVD)-grown films and discussed with respect to their defect structure. This knowledge will support the development of future non-volatile memory devices and novel transistor structures based on ferroelectric nitride thin films via interface and defect engineering.

溅射外延生长Al0.92Sc0.08N/GaN异质结构的界面极化开关
将铁电氮化物a1 - xscxn集成到GaN模板上可以增强新型高功率晶体管和存储器件的功能。这需要详细了解铁电畴结构及其对电性能的影响。本文研究了在接近晶格匹配条件的氮化镓上生长高相干Al0.92Sc0.08N薄膜的溅射外延。扫描透射电子显微镜(STEM)研究揭示了铁电开关的极性畴和畴传播机制。原子分辨率成像表明,极化反转开始于一个界面切换过程,在这个过程中,靠近界面的单层已经将其极化从生长的M极性改变为n极性。利用电子能量损失谱(EELS)分析了这种平面极化不连续的原子构型,揭示了电子结构的系统变化。此外,切换后,在Pt电极的顶部界面上发现了具有m极性的持久畴。这些关于溅射沉积Al0.92Sc0.08N/GaN异质结构中铁电畴的位置和原子结构的见解与金属有机化学气相沉积(MOCVD)生长的薄膜进行了比较,并讨论了它们的缺陷结构。这些知识将通过界面和缺陷工程支持未来基于氮化铁电薄膜的非易失性存储器件和新型晶体管结构的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信