Manipulating Ferroelectric Topological Polar Structures with Twisted Light.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nimish P Nazirkar, Viet Tran, Pascal Bassène, Atoumane Ndiaye, Julie Barringer, Jie Jiang, Wonsuk Cha, Ross Harder, Jian Shi, Moussa N'Gom, Edwin Fohtung
{"title":"Manipulating Ferroelectric Topological Polar Structures with Twisted Light.","authors":"Nimish P Nazirkar, Viet Tran, Pascal Bassène, Atoumane Ndiaye, Julie Barringer, Jie Jiang, Wonsuk Cha, Ross Harder, Jian Shi, Moussa N'Gom, Edwin Fohtung","doi":"10.1002/adma.202415231","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamic control of non-equilibrium states represents a central challenge in condensed matter physics. While intense terahertz fields drive metal-insulator transitions and ferroelectricity via soft phonon modes, recent theory suggests that twisted light with orbital angular momentum (OAM) offers a distinct route to manipulate ferroelectric order and stabilize topological excitations including skyrmions, vortices, and Hopfions. Control of ferroelectric polarization in quasi-2D CsBiNb<sub>2</sub>O<sub>7</sub> (CBNO) is demonstrated using non-resonant twisted ultra-violet (UV) light (375 nm, 800 THz). Combining in situ X-ray Bragg coherent diffractive imaging (BCDI), twisted optical Raman spectroscopy, and density functional theory (DFT), three-dimensional (3D) ionic displacements, strain fields, and polarization changes are resolved in single crystals. Operando measurements reveal light-induced strain hysteresis under twisted light-a hallmark of nonlinear, history-dependent ferroelastic switching driven by OAM. Discrete, irreversible domain transitions emerge as the topological charge ℓ is cycled, stabilizing non-trivial domain textures including vortex-antivortex pairs, Bloch/anti-Bloch points, and merons. These persist after OAM removal, indicating a memory effect. Competing mechanisms are discussed, including multiphoton absorption, strain-mediated polarization switching, and defect-wall interactions. The findings establish structured light as a tool for deterministic, reversible control of ferroic states, enabling optically reconfigurable non-volatile devices.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2415231"},"PeriodicalIF":27.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202415231","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic control of non-equilibrium states represents a central challenge in condensed matter physics. While intense terahertz fields drive metal-insulator transitions and ferroelectricity via soft phonon modes, recent theory suggests that twisted light with orbital angular momentum (OAM) offers a distinct route to manipulate ferroelectric order and stabilize topological excitations including skyrmions, vortices, and Hopfions. Control of ferroelectric polarization in quasi-2D CsBiNb2O7 (CBNO) is demonstrated using non-resonant twisted ultra-violet (UV) light (375 nm, 800 THz). Combining in situ X-ray Bragg coherent diffractive imaging (BCDI), twisted optical Raman spectroscopy, and density functional theory (DFT), three-dimensional (3D) ionic displacements, strain fields, and polarization changes are resolved in single crystals. Operando measurements reveal light-induced strain hysteresis under twisted light-a hallmark of nonlinear, history-dependent ferroelastic switching driven by OAM. Discrete, irreversible domain transitions emerge as the topological charge ℓ is cycled, stabilizing non-trivial domain textures including vortex-antivortex pairs, Bloch/anti-Bloch points, and merons. These persist after OAM removal, indicating a memory effect. Competing mechanisms are discussed, including multiphoton absorption, strain-mediated polarization switching, and defect-wall interactions. The findings establish structured light as a tool for deterministic, reversible control of ferroic states, enabling optically reconfigurable non-volatile devices.

用扭曲光操纵铁电拓扑极性结构。
非平衡态的动态控制是凝聚态物理中的一个核心挑战。虽然强太赫兹场通过软声子模式驱动金属绝缘体跃迁和铁电性,但最近的理论表明,具有轨道角动量的扭曲光(OAM)提供了一种独特的途径来操纵铁电有序和稳定拓扑激励,包括skyrmions, vortices和Hopfions。利用非共振扭曲紫外(375nm, 800thz)光研究了准二维CsBiNb2O7 (CBNO)的铁电极化控制。结合原位x射线Bragg相干衍射成像(BCDI)、扭曲光学拉曼光谱和密度泛函理论(DFT),在单晶中解析三维(3D)离子位移、应变场和极化变化。Operando测量揭示了在扭曲光下光诱导的应变滞后-由OAM驱动的非线性,历史相关的铁弹性开关的标志。离散的、不可逆的域跃迁随着拓扑电荷的循环而出现,稳定了包括涡旋-反涡旋对、Bloch/anti-Bloch点和介子在内的非平凡域织构。这些在OAM去除后仍然存在,表明记忆效应。讨论了竞争机制,包括多光子吸收、应变介导的极化开关和缺陷壁相互作用。这一发现确立了结构光作为确定性、可逆控制铁态的工具,使光学可重构的非易失性器件成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信