Exceptional Oxidation Resistance of High-Entropy Carbides up to 3600 °C.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zihao Wen, Yiwen Liu, Jing Yang, Yuhui Chen, Yaming Fu, Lei Zhuang, Hulei Yu, Yanhui Chu
{"title":"Exceptional Oxidation Resistance of High-Entropy Carbides up to 3600 °C.","authors":"Zihao Wen, Yiwen Liu, Jing Yang, Yuhui Chen, Yaming Fu, Lei Zhuang, Hulei Yu, Yanhui Chu","doi":"10.1002/adma.202507254","DOIUrl":null,"url":null,"abstract":"<p><p>Achieving exceptional oxidation resistance at elevated temperatures is long desirable for ultrahigh-temperature materials to be used in relevant applications such as hypersonic flights, re-entry vehicles, and propulsion systems. However, their practical service temperatures are typically limited to below 3000 °C. Here, the exploration of (Hf, Ta, Zr, W)C high-entropy carbides with exceptional oxidation resistance of 2.7 µm·s<sup>-1</sup> up to 3600 °C through a high-entropy compositional engineering strategy is reported. This impressive oxidation behavior arises from the formation of unique dual-structural oxide layers involving numerous high-melting-point W particles uniformly embedded within molten (Hf, Me)<sub>6</sub>(Ta, Me)<sub>2</sub>O<sub>17</sub> (Me = metal element, Hf, Ta, Zr, and W) primary oxides. The developed (Hf, Ta, Zr, W)C demonstrates a significant breakthrough for ultrahigh-temperature applications up to 3600 °C, paving the way for further design of advanced ultrahigh-temperature materials capable of serving at higher service temperatures.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2507254"},"PeriodicalIF":27.4000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202507254","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving exceptional oxidation resistance at elevated temperatures is long desirable for ultrahigh-temperature materials to be used in relevant applications such as hypersonic flights, re-entry vehicles, and propulsion systems. However, their practical service temperatures are typically limited to below 3000 °C. Here, the exploration of (Hf, Ta, Zr, W)C high-entropy carbides with exceptional oxidation resistance of 2.7 µm·s-1 up to 3600 °C through a high-entropy compositional engineering strategy is reported. This impressive oxidation behavior arises from the formation of unique dual-structural oxide layers involving numerous high-melting-point W particles uniformly embedded within molten (Hf, Me)6(Ta, Me)2O17 (Me = metal element, Hf, Ta, Zr, and W) primary oxides. The developed (Hf, Ta, Zr, W)C demonstrates a significant breakthrough for ultrahigh-temperature applications up to 3600 °C, paving the way for further design of advanced ultrahigh-temperature materials capable of serving at higher service temperatures.

高熵碳化物高达3600°C的优异抗氧化性。
在高温下实现优异的抗氧化性能是超高温材料在相关应用中的长期需求,如高超音速飞行、再入飞行器和推进系统。然而,它们的实际使用温度通常限制在3000°C以下。本文报道了通过高熵组分工程策略,探索出具有2.7µm·s-1的优异抗氧化性能的(Hf, Ta, Zr, W)C高熵碳化物,最高可达3600℃。这种令人印象深刻的氧化行为源于独特的双结构氧化层的形成,其中包括大量高熔点W颗粒均匀地嵌入熔融的(Hf, Me)6(Ta, Me)2O17 (Me =金属元素,Hf, Ta, Zr和W)初级氧化物中。开发的(Hf, Ta, Zr, W)C在高达3600°C的超高温应用中取得了重大突破,为进一步设计能够在更高使用温度下使用的先进超高温材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信