Cloud Inspired White and Grey Plasmonic Metasurfaces for Camouflaged Thermal Management.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mhd Adel Assad, Moheb Abdelaziz, Torge Hartig, Thomas Strunskus, Alexander Vahl, Franz Faupel, Mady Elbahri
{"title":"Cloud Inspired White and Grey Plasmonic Metasurfaces for Camouflaged Thermal Management.","authors":"Mhd Adel Assad, Moheb Abdelaziz, Torge Hartig, Thomas Strunskus, Alexander Vahl, Franz Faupel, Mady Elbahri","doi":"10.1002/adma.202501080","DOIUrl":null,"url":null,"abstract":"<p><p>Inspired by nature's color-driven thermal regulation mechanisms and the atmospheric radiative effects of cloud-aerosol interactions, this work presents the design of disordered metasurfaces capable of achieving white and grey plasmonic colors. This innovation advances light and thermal management technologies within the framework of stealth and camouflage applications. The white plasmonic metasurfaces emulate the cooling effects of clouds, reducing substrate temperatures by a relative -10 °C under standard solar illumination through backscattering. In contrast, transitioning to a grey state with a nanocomposite absorber suppresses backscattering and enables efficient light trapping, resulting in a relative +10  °C temperature increase compared to conventional black absorbers. These findings introduce a novel approach to localized thermal management, distinct from traditional passive cooling strategies that rely on high-emissivity materials. The metasurfaces' low-emissivity properties and visible appearance open opportunities in advanced camouflage, stealth technologies, and thermal energy solutions. Additionally, the scalable, sustainable design, realized through all-in-chamber nanofabrication via sputtering, eliminates the need for chemically intensive synthesis methods while ensuring long-term stability.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2501080"},"PeriodicalIF":27.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202501080","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by nature's color-driven thermal regulation mechanisms and the atmospheric radiative effects of cloud-aerosol interactions, this work presents the design of disordered metasurfaces capable of achieving white and grey plasmonic colors. This innovation advances light and thermal management technologies within the framework of stealth and camouflage applications. The white plasmonic metasurfaces emulate the cooling effects of clouds, reducing substrate temperatures by a relative -10 °C under standard solar illumination through backscattering. In contrast, transitioning to a grey state with a nanocomposite absorber suppresses backscattering and enables efficient light trapping, resulting in a relative +10  °C temperature increase compared to conventional black absorbers. These findings introduce a novel approach to localized thermal management, distinct from traditional passive cooling strategies that rely on high-emissivity materials. The metasurfaces' low-emissivity properties and visible appearance open opportunities in advanced camouflage, stealth technologies, and thermal energy solutions. Additionally, the scalable, sustainable design, realized through all-in-chamber nanofabrication via sputtering, eliminates the need for chemically intensive synthesis methods while ensuring long-term stability.

云启发的白色和灰色等离子体超表面伪装热管理。
受自然界颜色驱动的热调节机制和云-气溶胶相互作用的大气辐射效应的启发,这项工作提出了能够实现白色和灰色等离子体颜色的无序超表面的设计。这一创新在隐身和伪装应用的框架内推进了光和热管理技术。白色等离子体超表面模拟云的冷却效应,在标准太阳照射下通过后向散射使衬底温度相对降低-10°C。相比之下,过渡到灰色状态的纳米复合吸收剂抑制了后向散射,实现了有效的光捕获,与传统的黑色吸收剂相比,温度相对提高了10°C。这些发现引入了一种新的局部热管理方法,不同于传统的依赖高发射率材料的被动冷却策略。超表面的低发射特性和可见外观为先进的伪装、隐身技术和热能解决方案提供了机会。此外,可扩展的、可持续的设计,通过溅射实现的全腔内纳米制造,消除了对化学密集合成方法的需求,同时确保了长期稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信