Synergy between unique Pt–C coordination and Pt quantum dots on TiO2 for exceptional photocatalytic methanol dehydrogenation

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Tong Zhou, Zhongge Luo, Jiangting Zhao, Shoujie Liu, Longzhou Zhang, Yumin Zhang, Qingjie Lu, Mingpeng Chen, Jin Zhang, Huachuan Sun, Tianwei He, Junwang Tang, Qingju Liu
{"title":"Synergy between unique Pt–C coordination and Pt quantum dots on TiO2 for exceptional photocatalytic methanol dehydrogenation","authors":"Tong Zhou,&nbsp;Zhongge Luo,&nbsp;Jiangting Zhao,&nbsp;Shoujie Liu,&nbsp;Longzhou Zhang,&nbsp;Yumin Zhang,&nbsp;Qingjie Lu,&nbsp;Mingpeng Chen,&nbsp;Jin Zhang,&nbsp;Huachuan Sun,&nbsp;Tianwei He,&nbsp;Junwang Tang,&nbsp;Qingju Liu","doi":"10.1126/sciadv.adw2028","DOIUrl":null,"url":null,"abstract":"<div >Photocatalytic hydrogen production has emerged as a promising strategy to mitigate the environmental impact of carbon-intensive chemical industries. Loading single atoms is known to enhance photocatalytic efficiency, as their activity is heavily influenced by the microenvironment. Therefore, achieving precise control over the microenvironment of single atoms is crucial but remains a substantial challenge. Here, we reported a unique Pt–C/TiO<sub>2</sub> photocatalyst with Pt quantum dots (Pt<sub>QD</sub>) and C-coordinated Pt single atoms (Pt<sub>SA</sub>). Under the given experimental conditions, the hydrogen production rate reaches 43.2 mmol hour<sup>−1</sup> with 70 mg of the photocatalyst. Notably, the hydrogen molecules generated per incident photon (H<sub>2</sub>/photon) reach 0.92. The special coordination environment influenced by C not only provides a direct transmission channel for photogenerated electrons but also activates surrounding Ti, thus improving the separation of the electron-hole pairs and H<sub>2</sub> production performance. This research provides a prospect of efficient on-site hydrogen production.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 23","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw2028","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw2028","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic hydrogen production has emerged as a promising strategy to mitigate the environmental impact of carbon-intensive chemical industries. Loading single atoms is known to enhance photocatalytic efficiency, as their activity is heavily influenced by the microenvironment. Therefore, achieving precise control over the microenvironment of single atoms is crucial but remains a substantial challenge. Here, we reported a unique Pt–C/TiO2 photocatalyst with Pt quantum dots (PtQD) and C-coordinated Pt single atoms (PtSA). Under the given experimental conditions, the hydrogen production rate reaches 43.2 mmol hour−1 with 70 mg of the photocatalyst. Notably, the hydrogen molecules generated per incident photon (H2/photon) reach 0.92. The special coordination environment influenced by C not only provides a direct transmission channel for photogenerated electrons but also activates surrounding Ti, thus improving the separation of the electron-hole pairs and H2 production performance. This research provides a prospect of efficient on-site hydrogen production.
独特的Pt - c配位和TiO2上的Pt量子点之间的协同作用用于特殊的光催化甲醇脱氢
光催化制氢已成为减轻碳密集型化学工业对环境影响的一种有前途的策略。已知负载单原子可以提高光催化效率,因为它们的活性受到微环境的严重影响。因此,实现对单个原子微环境的精确控制至关重要,但仍然是一个重大挑战。本文报道了一种独特的具有Pt量子点(PtQD)和c配位Pt单原子(PtSA)的Pt -c /TiO2光催化剂。在给定的实验条件下,当光催化剂用量为70 mg时,产氢率达到43.2 mmol h−1。值得注意的是,每个入射光子产生的氢分子(H2/photon)达到0.92。受C影响的特殊配位环境不仅为光生电子提供了直接的传输通道,还激活了周围的Ti,从而提高了电子-空穴对的分离和制氢性能。该研究为高效现场制氢提供了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信