Optimizing Charge Separated Synergistic Binding Sites in Self-Healing Crystalline Porous Organic Salts for Benchmark Trace Alkyne/Alkene Separation

Yunjia Jiang, Lingyao Wang, Guolong Xing, Changhong Liu, Guangzu Xiong, Danling Sun, Jianbo Hu, Weidong Zhu, Zonglin Gu, Banglin Chen, Teng Ben, Yuanbin Zhang
{"title":"Optimizing Charge Separated Synergistic Binding Sites in Self-Healing Crystalline Porous Organic Salts for Benchmark Trace Alkyne/Alkene Separation","authors":"Yunjia Jiang,&nbsp;Lingyao Wang,&nbsp;Guolong Xing,&nbsp;Changhong Liu,&nbsp;Guangzu Xiong,&nbsp;Danling Sun,&nbsp;Jianbo Hu,&nbsp;Weidong Zhu,&nbsp;Zonglin Gu,&nbsp;Banglin Chen,&nbsp;Teng Ben,&nbsp;Yuanbin Zhang","doi":"10.1002/ange.202507442","DOIUrl":null,"url":null,"abstract":"<p>The separation of trace alkyne (C<sub>2</sub>H<sub>2</sub>/C<sub>3</sub>H<sub>4</sub>) impurities from alkenes (C<sub>2</sub>H<sub>4</sub>/C<sub>3</sub>H<sub>6</sub>) is a significant but challenging process to produce polymer-grade C<sub>2</sub>H<sub>4</sub> and C<sub>3</sub>H<sub>6</sub>. Herein, we reported an optimally designed charge-separated organic framework, crystalline porous organic salt (CPOS-1), with confined polar channels for highly efficient alkyne/alkene separation. CPOS-1 exhibits excellent stability, remarkably high C<sub>2</sub>H<sub>2</sub> (18.4 cm<sup>3</sup> g<sup>−1</sup>) and C<sub>3</sub>H<sub>4</sub> (20.9 cm<sup>3</sup> g<sup>−1</sup>) uptakes at 0.01 bar and 298 K, and benchmark C<sub>2</sub>H<sub>2</sub>/C<sub>2</sub>H<sub>4</sub> (25.1) and C<sub>3</sub>H<sub>4</sub>/C<sub>3</sub>H<sub>6</sub> (43.9) separation selectivities for 1/99 alkyne/alkene mixtures. The practical alkyne/alkene separation performance was completely identified by breakthrough-column experiments under various conditions with excellent cycle stability and high alkene productivities (C<sub>2</sub>H<sub>4</sub>: 216.6 L kg<sup>−1</sup>; C<sub>3</sub>H<sub>6</sub>: 162.4 L kg<sup>−1</sup>). Theoretical calculations indicated that pore aperture in CPOS-1 acts as a tailored single-molecule trap, where alkynes are captured by multiple synergistic electropositive and electronegative sites, thus enhancing alkyne recognition. Furthermore, the ease of rehealing facilitates its practical application, transcending the limitations of the metal-organic frameworks (MOFs) and covalent organic frameworks (COFs).</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202507442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The separation of trace alkyne (C2H2/C3H4) impurities from alkenes (C2H4/C3H6) is a significant but challenging process to produce polymer-grade C2H4 and C3H6. Herein, we reported an optimally designed charge-separated organic framework, crystalline porous organic salt (CPOS-1), with confined polar channels for highly efficient alkyne/alkene separation. CPOS-1 exhibits excellent stability, remarkably high C2H2 (18.4 cm3 g−1) and C3H4 (20.9 cm3 g−1) uptakes at 0.01 bar and 298 K, and benchmark C2H2/C2H4 (25.1) and C3H4/C3H6 (43.9) separation selectivities for 1/99 alkyne/alkene mixtures. The practical alkyne/alkene separation performance was completely identified by breakthrough-column experiments under various conditions with excellent cycle stability and high alkene productivities (C2H4: 216.6 L kg−1; C3H6: 162.4 L kg−1). Theoretical calculations indicated that pore aperture in CPOS-1 acts as a tailored single-molecule trap, where alkynes are captured by multiple synergistic electropositive and electronegative sites, thus enhancing alkyne recognition. Furthermore, the ease of rehealing facilitates its practical application, transcending the limitations of the metal-organic frameworks (MOFs) and covalent organic frameworks (COFs).

自愈晶体多孔有机盐中电荷分离协同结合位点的优化研究
从烯烃(C2H4/C3H6)中分离痕量炔(C2H2/C3H4)杂质是生产聚合物级C2H4和C3H6的一个重要但具有挑战性的过程。在此,我们报道了一种优化设计的电荷分离有机框架,晶体多孔有机盐(CPOS-1),具有用于高效分离炔/烯烃的限制性极性通道。cpos1具有优异的稳定性,在0.01 bar和298 K下C2H2 (18.4 cm3 g−1)和C3H4 (20.9 cm3 g−1)的吸收量非常高,C2H2/C2H4(25.1)和C3H4/C3H6(43.9)的基准分离选择性为1/99炔/烯烃混合物。通过各种条件下的突破柱实验,完全确定了实际的炔/烯烃分离性能,具有良好的循环稳定性和较高的烯烃产率(C2H4: 216.6 L kg−1;C3H6: 162.4 L kg−1)。理论计算表明,CPOS-1的孔径相当于一个定制的单分子陷阱,其中炔被多个协同的正电和负电位点捕获,从而增强了炔的识别能力。此外,再修复的便利性促进了其实际应用,超越了金属有机框架(MOFs)和共价有机框架(COFs)的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信