Predator–Prey Behavior of Droplets Propelling Through Self-Generated Channels in Crystalline Surfactant Layers

Priyanshu Singh, Peter A. Korevaar
{"title":"Predator–Prey Behavior of Droplets Propelling Through Self-Generated Channels in Crystalline Surfactant Layers","authors":"Priyanshu Singh,&nbsp;Peter A. Korevaar","doi":"10.1002/ange.202502352","DOIUrl":null,"url":null,"abstract":"<p>Motile droplets provide an attractive platform for liquid matter-based applications and protocell analogues displaying life-like features. The functionality of collectively operating droplets increases by the advance of well-designed (physico)chemical systems directing droplet–droplet interactions. Here, we report a strategy based on crystalline surfactant layers at air/water interfaces, which sustain the propulsion of floating droplets and at the same time shape the paths for other droplets attracted by them. First, we show how decylamine forms a closed, crystalline layer that remains at the air/water interface. Second, we demonstrate how aldehyde-based oil droplets react to decylamine in the crystalline layer by forming an imine, causing the droplets to move through the layer while leaving behind an open channel (comparable to “Pac-Man”). Third, we introduce tri(ethylene glycol) monododecylether (C<sub>12</sub>E<sub>3</sub>) droplets in the crystalline layer. The crystalline layer suppresses the motion of the C<sub>12</sub>E<sub>3</sub> droplets, however, the aldehyde droplets create surface tension gradients upon depletion of surfactants from the air/water interface, thereby driving Marangoni flows that attract the C<sub>12</sub>E<sub>3</sub> droplets as well as the myelin filaments they grow: Causing the C<sub>12</sub>E<sub>3</sub> droplets to chase, and ultimately catch, the aldehyde droplets along the channels they have created, featuring a predator-prey analogy established at an air/water interface.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202502352","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202502352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motile droplets provide an attractive platform for liquid matter-based applications and protocell analogues displaying life-like features. The functionality of collectively operating droplets increases by the advance of well-designed (physico)chemical systems directing droplet–droplet interactions. Here, we report a strategy based on crystalline surfactant layers at air/water interfaces, which sustain the propulsion of floating droplets and at the same time shape the paths for other droplets attracted by them. First, we show how decylamine forms a closed, crystalline layer that remains at the air/water interface. Second, we demonstrate how aldehyde-based oil droplets react to decylamine in the crystalline layer by forming an imine, causing the droplets to move through the layer while leaving behind an open channel (comparable to “Pac-Man”). Third, we introduce tri(ethylene glycol) monododecylether (C12E3) droplets in the crystalline layer. The crystalline layer suppresses the motion of the C12E3 droplets, however, the aldehyde droplets create surface tension gradients upon depletion of surfactants from the air/water interface, thereby driving Marangoni flows that attract the C12E3 droplets as well as the myelin filaments they grow: Causing the C12E3 droplets to chase, and ultimately catch, the aldehyde droplets along the channels they have created, featuring a predator-prey analogy established at an air/water interface.

晶体表面活性剂层中水滴自生通道推进的捕食-被捕食行为
可移动的液滴为基于液体物质的应用和显示生命特征的原始细胞类似物提供了一个有吸引力的平台。通过设计良好的(物理)化学系统来指导液滴之间的相互作用,集体操作液滴的功能增加了。在这里,我们报告了一种基于空气/水界面上的晶体表面活性剂层的策略,它可以维持漂浮液滴的推进力,同时为被它们吸引的其他液滴塑造路径。首先,我们展示了癸胺如何形成一个封闭的结晶层,并保持在空气/水界面上。其次,我们演示了醛基油滴如何通过形成亚胺与晶体层中的癸胺反应,导致液滴在穿过晶体层的同时留下一个开放的通道(类似于“吃豆人”)。第三,我们在结晶层中引入三(乙二醇)单十二烷基醚(C12E3)液滴。晶体层抑制了C12E3液滴的运动,然而,醛液滴在空气/水界面表面活性剂耗尽时产生表面张力梯度,从而驱动Marangoni流,吸引C12E3液滴以及它们生长的髓鞘丝:导致C12E3液滴沿着它们创造的通道追逐并最终捕获醛液滴,在空气/水界面建立了一个捕食者-猎物的类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信