Di Gao, Ziqi Xu, Xiangli Li, Yuhan Zhao, Qianhao Min, Zixuan Chen, Qin Xu, Ye Tian, Junpeng Xu, Jun-Jie Zhu
{"title":"DNA Nanotubule-Based Nanodevices with ATP-Responsive Gating for Direct Cytosolic Delivery of Nucleic Acids and Proteins","authors":"Di Gao, Ziqi Xu, Xiangli Li, Yuhan Zhao, Qianhao Min, Zixuan Chen, Qin Xu, Ye Tian, Junpeng Xu, Jun-Jie Zhu","doi":"10.1002/ange.202505290","DOIUrl":null,"url":null,"abstract":"<p>Delivering biomacromolecules to the cytosol remains a formidable challenge, as these molecules are predominantly sequestered within endosomes after endocytosis. The limited efficacy of current delivery systems in promoting reliable endosomal escape underscores the need for innovative strategies. Here, we report a DNA origami nanotubule to construct transmembrane delivery nanodevices with size-selective gating and ATP-responsive channel activation. By integrating unilamellar vesicles as large storage compartments, these nanodevices can encapsulate a wide range of macromolecules, including small interfering RNA, messenger RNA, plasmid DNA, and CRISPR-Cas9 ribonucleoprotein complexes. By bypassing traditional endocytic pathways, the nanotubules enable the delivery of substantial payload quantities directly across the plasma membrane. This approach provides a promising platform for delivering macromolecular therapeutics into the cytosol, advancing gene therapy strategies, and broadening their biomedical applications.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202505290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Delivering biomacromolecules to the cytosol remains a formidable challenge, as these molecules are predominantly sequestered within endosomes after endocytosis. The limited efficacy of current delivery systems in promoting reliable endosomal escape underscores the need for innovative strategies. Here, we report a DNA origami nanotubule to construct transmembrane delivery nanodevices with size-selective gating and ATP-responsive channel activation. By integrating unilamellar vesicles as large storage compartments, these nanodevices can encapsulate a wide range of macromolecules, including small interfering RNA, messenger RNA, plasmid DNA, and CRISPR-Cas9 ribonucleoprotein complexes. By bypassing traditional endocytic pathways, the nanotubules enable the delivery of substantial payload quantities directly across the plasma membrane. This approach provides a promising platform for delivering macromolecular therapeutics into the cytosol, advancing gene therapy strategies, and broadening their biomedical applications.