DNA Nanotubule-Based Nanodevices with ATP-Responsive Gating for Direct Cytosolic Delivery of Nucleic Acids and Proteins

Di Gao, Ziqi Xu, Xiangli Li, Yuhan Zhao, Qianhao Min, Zixuan Chen, Qin Xu, Ye Tian, Junpeng Xu, Jun-Jie Zhu
{"title":"DNA Nanotubule-Based Nanodevices with ATP-Responsive Gating for Direct Cytosolic Delivery of Nucleic Acids and Proteins","authors":"Di Gao,&nbsp;Ziqi Xu,&nbsp;Xiangli Li,&nbsp;Yuhan Zhao,&nbsp;Qianhao Min,&nbsp;Zixuan Chen,&nbsp;Qin Xu,&nbsp;Ye Tian,&nbsp;Junpeng Xu,&nbsp;Jun-Jie Zhu","doi":"10.1002/ange.202505290","DOIUrl":null,"url":null,"abstract":"<p>Delivering biomacromolecules to the cytosol remains a formidable challenge, as these molecules are predominantly sequestered within endosomes after endocytosis. The limited efficacy of current delivery systems in promoting reliable endosomal escape underscores the need for innovative strategies. Here, we report a DNA origami nanotubule to construct transmembrane delivery nanodevices with size-selective gating and ATP-responsive channel activation. By integrating unilamellar vesicles as large storage compartments, these nanodevices can encapsulate a wide range of macromolecules, including small interfering RNA, messenger RNA, plasmid DNA, and CRISPR-Cas9 ribonucleoprotein complexes. By bypassing traditional endocytic pathways, the nanotubules enable the delivery of substantial payload quantities directly across the plasma membrane. This approach provides a promising platform for delivering macromolecular therapeutics into the cytosol, advancing gene therapy strategies, and broadening their biomedical applications.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202505290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Delivering biomacromolecules to the cytosol remains a formidable challenge, as these molecules are predominantly sequestered within endosomes after endocytosis. The limited efficacy of current delivery systems in promoting reliable endosomal escape underscores the need for innovative strategies. Here, we report a DNA origami nanotubule to construct transmembrane delivery nanodevices with size-selective gating and ATP-responsive channel activation. By integrating unilamellar vesicles as large storage compartments, these nanodevices can encapsulate a wide range of macromolecules, including small interfering RNA, messenger RNA, plasmid DNA, and CRISPR-Cas9 ribonucleoprotein complexes. By bypassing traditional endocytic pathways, the nanotubules enable the delivery of substantial payload quantities directly across the plasma membrane. This approach provides a promising platform for delivering macromolecular therapeutics into the cytosol, advancing gene therapy strategies, and broadening their biomedical applications.

基于DNA纳米管的纳米器件与atp响应门控,用于核酸和蛋白质的直接胞质递送
将生物大分子输送到细胞质中仍然是一个艰巨的挑战,因为这些分子在内吞作用后主要被隔离在核内体中。目前的递送系统在促进可靠的内体逃逸方面的有限功效强调了创新策略的必要性。在这里,我们报道了一种DNA折纸纳米管,用于构建具有尺寸选择性门控和atp响应通道激活的跨膜递送纳米器件。通过整合单层囊泡作为大的存储室,这些纳米器件可以封装各种大分子,包括小干扰RNA、信使RNA、质粒DNA和CRISPR-Cas9核糖核蛋白复合物。通过绕过传统的内吞途径,纳米管能够直接通过质膜输送大量有效载荷。这种方法为将大分子治疗药物输送到细胞质中、推进基因治疗策略和扩大其生物医学应用提供了一个有前途的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信