High-Throughput DFT-Assisted Design of Electrode for Efficient High-Temperature Electrochemical Dehydrogenation

Xuepeng Xiang, Zilin Ma, Jun Zhang, Yifeng Li, Yongjian Ye, Wenyu Lu, Mengzhen Zhou, Shasha Huang, Haijun Fu, Bo Yu, Shijun Zhao, Zhang Lin, Yan Chen
{"title":"High-Throughput DFT-Assisted Design of Electrode for Efficient High-Temperature Electrochemical Dehydrogenation","authors":"Xuepeng Xiang,&nbsp;Zilin Ma,&nbsp;Jun Zhang,&nbsp;Yifeng Li,&nbsp;Yongjian Ye,&nbsp;Wenyu Lu,&nbsp;Mengzhen Zhou,&nbsp;Shasha Huang,&nbsp;Haijun Fu,&nbsp;Bo Yu,&nbsp;Shijun Zhao,&nbsp;Zhang Lin,&nbsp;Yan Chen","doi":"10.1002/ange.202502937","DOIUrl":null,"url":null,"abstract":"<p>Protonic ceramic electrolysis cell (PCEC) is a promising technique to enable efficient dehydrogenation reactions for producing valuable chemicals, but is still limited by the lack of stable electrocatalysts to achieve efficient O─H/C─H dissociation. In this work, upon high-throughput first-principles calculations, Ba(Zr,Co,Fe,M)O<sub>3</sub>-based (M represents dopants) perovskite is formulated, and oxygen vacancy formation energy (<span></span><math></math>) and hydration energy (Δ<i>E</i><sub>hydr</sub>) are taken as two key performance indicators to screen potential PCEC electrode materials derived from this category. Trivalent doping elements, particularly Y, Yb, Er, and Tm, achieve a good balance between <span></span><math></math> and Δ<i>E</i><sub>hydr</sub>. Experiments further validate that the BaZr<sub>0.125</sub>Co<sub>0.375</sub>Fe<sub>0.375</sub>Tm<sub>0.125</sub>O<sub>3−δ</sub> showed impressive dehydrogenation reaction activity, with faradaic efficiency as high as 98.90% in water electrolysis, and outstanding ethane conversion rate (67.60%) and ethylene yield (62.62%) for ethane dehydrogenation reaction at 700 °C. The computational approach can be applied to the rational design of novel electrode materials for other electrochemical reactions in energy and environment devices.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202502937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Protonic ceramic electrolysis cell (PCEC) is a promising technique to enable efficient dehydrogenation reactions for producing valuable chemicals, but is still limited by the lack of stable electrocatalysts to achieve efficient O─H/C─H dissociation. In this work, upon high-throughput first-principles calculations, Ba(Zr,Co,Fe,M)O3-based (M represents dopants) perovskite is formulated, and oxygen vacancy formation energy () and hydration energy (ΔEhydr) are taken as two key performance indicators to screen potential PCEC electrode materials derived from this category. Trivalent doping elements, particularly Y, Yb, Er, and Tm, achieve a good balance between and ΔEhydr. Experiments further validate that the BaZr0.125Co0.375Fe0.375Tm0.125O3−δ showed impressive dehydrogenation reaction activity, with faradaic efficiency as high as 98.90% in water electrolysis, and outstanding ethane conversion rate (67.60%) and ethylene yield (62.62%) for ethane dehydrogenation reaction at 700 °C. The computational approach can be applied to the rational design of novel electrode materials for other electrochemical reactions in energy and environment devices.

高效高温电化学脱氢电极的高通量dft辅助设计
质子陶瓷电解电池(PCEC)是一种很有前途的技术,可以实现高效的脱氢反应,以生产有价值的化学品,但仍然受到缺乏稳定的电催化剂来实现高效O─H/C─H解离的限制。在本工作中,通过高通量第一线原理计算,配制了Ba(Zr,Co,Fe,M) o3基(M代表掺杂剂)钙钛矿,并将氧空位形成能()和水合能(ΔEhydr)作为两个关键性能指标来筛选该类衍生的潜在PCEC电极材料。三价掺杂元素,特别是Y、Yb、Er和Tm,在和ΔEhydr之间达到了很好的平衡。实验进一步验证了BaZr0.125Co0.375Fe0.375Tm0.125O3−δ具有良好的脱氢反应活性,在700℃条件下的电解反应中,法拉第效率高达98.90%,乙烷转化率为67.60%,乙烯收率为62.62%。计算方法可应用于能源与环境器件中其他电化学反应的新型电极材料的合理设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信