Integrating Ambient Ionization Mass Spectrometry Imaging and Spatial Transcriptomics on the Same Cancer Tissues to Identify RNA–Metabolite Correlations

Trevor M. Godfrey, Yasmin Shanneik, Wanqiu Zhang, Thao Tran, Nico Verbeeck, Nathan H. Patterson, Faith E. Jackobs, Chandandeep Nagi, Maheshwari Ramineni, Livia S. Eberlin
{"title":"Integrating Ambient Ionization Mass Spectrometry Imaging and Spatial Transcriptomics on the Same Cancer Tissues to Identify RNA–Metabolite Correlations","authors":"Trevor M. Godfrey,&nbsp;Yasmin Shanneik,&nbsp;Wanqiu Zhang,&nbsp;Thao Tran,&nbsp;Nico Verbeeck,&nbsp;Nathan H. Patterson,&nbsp;Faith E. Jackobs,&nbsp;Chandandeep Nagi,&nbsp;Maheshwari Ramineni,&nbsp;Livia S. Eberlin","doi":"10.1002/ange.202502028","DOIUrl":null,"url":null,"abstract":"<p>Innovations in spatial omics technologies applied to human tissues have led to breakthrough discoveries in various diseases, including cancer. Two of these approaches—spatial transcriptomics and spatial metabolomics—have blossomed independently, fueled by technologies such as spatial transcriptomics (ST) and mass spectrometry imaging (MSI). Although powerful, these technologies only offer insights into the spatial distributions of restricted classes of molecules and have not yet been integrated to provide more holistic insights into biological questions. These techniques can be performed on adjacent serial sections from the same sample, but section-to-section variability can convolute data integration. We present a novel method combining desorption electrospray ionization mass spectrometry imaging (DESI-MSI) spatial metabolomics and Visium spatial transcriptomics on the same tissue sections. We show that RNA quality is maintained after performing DESI-MSI on a tissue under ambient conditions and that ST data is unperturbed following DESI-MSI. We demonstrate this workflow on human breast and lung cancer tissues and identify novel correlations between metabolites and mRNA transcripts in cancer-specific tissue regions.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202502028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Innovations in spatial omics technologies applied to human tissues have led to breakthrough discoveries in various diseases, including cancer. Two of these approaches—spatial transcriptomics and spatial metabolomics—have blossomed independently, fueled by technologies such as spatial transcriptomics (ST) and mass spectrometry imaging (MSI). Although powerful, these technologies only offer insights into the spatial distributions of restricted classes of molecules and have not yet been integrated to provide more holistic insights into biological questions. These techniques can be performed on adjacent serial sections from the same sample, but section-to-section variability can convolute data integration. We present a novel method combining desorption electrospray ionization mass spectrometry imaging (DESI-MSI) spatial metabolomics and Visium spatial transcriptomics on the same tissue sections. We show that RNA quality is maintained after performing DESI-MSI on a tissue under ambient conditions and that ST data is unperturbed following DESI-MSI. We demonstrate this workflow on human breast and lung cancer tissues and identify novel correlations between metabolites and mRNA transcripts in cancer-specific tissue regions.

整合环境电离质谱成像和空间转录组学在相同的癌症组织中识别rna -代谢物的相关性
应用于人体组织的空间组学技术的创新导致了包括癌症在内的各种疾病的突破性发现。在空间转录组学(ST)和质谱成像(MSI)等技术的推动下,其中两种方法——空间转录组学和空间代谢组学——已经独立发展起来。尽管这些技术很强大,但它们只提供了对有限种类分子的空间分布的见解,还没有被整合到对生物学问题提供更全面的见解。这些技术可以在来自同一样本的相邻序列切片上执行,但切片之间的可变性会使数据集成变得复杂。我们提出了一种在同一组织切片上结合解吸电喷雾电离质谱成像(DESI-MSI)空间代谢组学和Visium空间转录组学的新方法。我们表明,在环境条件下对组织进行DESI-MSI后,RNA质量保持不变,并且在DESI-MSI后ST数据不受干扰。我们在人类乳腺癌和肺癌组织中证明了这一工作流程,并确定了癌症特定组织区域中代谢物和mRNA转录物之间的新相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信