Interfacial H-bond Network/Concentration Fields/Electric Fields Regulation Achieved by D-Valine Anions Realizes the Highly Efficient Aqueous Zinc Ion Batteries

Jiadong Lin, Chenchen Ji, Gaozhi Guo, Yulu Luo, Pengru Huang, Fen Xu, Lixian Sun, Wilhelm Pfleging, Kostya S. Novoselov
{"title":"Interfacial H-bond Network/Concentration Fields/Electric Fields Regulation Achieved by D-Valine Anions Realizes the Highly Efficient Aqueous Zinc Ion Batteries","authors":"Jiadong Lin,&nbsp;Chenchen Ji,&nbsp;Gaozhi Guo,&nbsp;Yulu Luo,&nbsp;Pengru Huang,&nbsp;Fen Xu,&nbsp;Lixian Sun,&nbsp;Wilhelm Pfleging,&nbsp;Kostya S. Novoselov","doi":"10.1002/ange.202501721","DOIUrl":null,"url":null,"abstract":"<p>Uncontrolled mobile anions and proton transport result in many issues, including interfacial anion depletion, irregular multiphysics fields fluctuations, space charge layer-induced interfacial Zn dendrites, and hydrogen evolution reaction (HER), which seriously exacerbates the cycling stability of zinc-ion batteries. Herein, this work constructs an efficient D-valine anion interface structure to reversely regulate the Zn<sup>2+</sup>/H<sup>+</sup> dynamic chemistry and unlocks the multiple regulation effects of this anionic interface by investigating interfacial proton transport and complex concentration/electric fields distribution of Zn anode through dynamic in-situ spectroscopy analysis, static energy calculations, and molecular dynamics simulation. We unravel core factors affecting complicated interfacial HER processes and the generation of the space charge layer. This anionic interfacial layer severs proton hopping transport by rupturing the initial water–water hydrogen bond, which effectively restrains uncontrolled HER processes. Further, the anion-immobilized interfacial layer accelerates Zn<sup>2+</sup> transfer to optimize the interfacial concentration fields. Also, the anionic interface restrains the formation of the anion depletion layer by relieving rapid Zn<sup>2+</sup> ions exhaustion and strengthening the uniformity of interfacial electrical field distribution, which suppresses space charges-induced Zn dendrite growth. Consequently, Zn||Zn symmetric cells deliver an ultralong cycle life of 4150 h. Importantly, the multiple regulation effects enable Zn||I<sub>2</sub> cells exhibit long-term stable life.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202501721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Uncontrolled mobile anions and proton transport result in many issues, including interfacial anion depletion, irregular multiphysics fields fluctuations, space charge layer-induced interfacial Zn dendrites, and hydrogen evolution reaction (HER), which seriously exacerbates the cycling stability of zinc-ion batteries. Herein, this work constructs an efficient D-valine anion interface structure to reversely regulate the Zn2+/H+ dynamic chemistry and unlocks the multiple regulation effects of this anionic interface by investigating interfacial proton transport and complex concentration/electric fields distribution of Zn anode through dynamic in-situ spectroscopy analysis, static energy calculations, and molecular dynamics simulation. We unravel core factors affecting complicated interfacial HER processes and the generation of the space charge layer. This anionic interfacial layer severs proton hopping transport by rupturing the initial water–water hydrogen bond, which effectively restrains uncontrolled HER processes. Further, the anion-immobilized interfacial layer accelerates Zn2+ transfer to optimize the interfacial concentration fields. Also, the anionic interface restrains the formation of the anion depletion layer by relieving rapid Zn2+ ions exhaustion and strengthening the uniformity of interfacial electrical field distribution, which suppresses space charges-induced Zn dendrite growth. Consequently, Zn||Zn symmetric cells deliver an ultralong cycle life of 4150 h. Importantly, the multiple regulation effects enable Zn||I2 cells exhibit long-term stable life.

d -缬氨酸阴离子实现界面氢键网络/浓度场/电场调节实现高效锌离子电池
不受控制的移动阴离子和质子输运导致界面阴离子耗竭、不规则的多物理场波动、空间电荷层诱导界面Zn枝晶、析氢反应(HER)等诸多问题,严重恶化了锌离子电池的循环稳定性。本文通过动态原位光谱分析、静态能量计算和分子动力学模拟,研究Zn阳极的界面质子输运和复杂浓度电场分布,构建了一个高效的D-valine阴离子界面结构,反向调控Zn2+/H+的动态化学反应,揭示了该阴离子界面的多重调控作用。我们揭示了影响复杂界面HER过程和空间电荷层生成的核心因素。这种阴离子界面层通过破坏初始的水-水氢键来切断质子跳跃传输,从而有效地抑制了不受控制的HER过程。此外,阴离子固定界面层加速了Zn2+的转移,优化了界面浓度场。阴离子界面通过抑制Zn2+离子的快速耗尽和增强界面电场分布的均匀性来抑制负离子耗尽层的形成,从而抑制空间电荷诱导的Zn枝晶生长。因此,锌b| |锌对称电池提供了4150小时的超长循环寿命。重要的是,多种调节作用使锌||I2电池具有长期稳定的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信