David B. Cavagnaro, Scott W. McCoy, Donald N. Lindsay, Luke A. McGuire, Jason W. Kean, Daniel T. Trugman
{"title":"Rainfall Thresholds for Postfire Debris-Flow Initiation Vary With Short-Duration Rainfall Climatology","authors":"David B. Cavagnaro, Scott W. McCoy, Donald N. Lindsay, Luke A. McGuire, Jason W. Kean, Daniel T. Trugman","doi":"10.1029/2024JF007781","DOIUrl":null,"url":null,"abstract":"<p>The size, frequency, and geographic scope of severe wildfires are expanding across the globe, including in the Western United States. Recently burned steeplands have an increased likelihood of debris flows, which pose hazards to downstream communities. The conditions for postfire debris-flow initiation are commonly expressed as rainfall intensity-duration thresholds, which can be estimated given sufficient observational history. However, the spread of wildfire across diverse climates poses a challenge for accurate threshold prediction in areas with limited observations. Studies of mass-movement processes in unburned areas indicate that thresholds vary with local climate, such that higher rainfall rates are required for initiation in climates characterized by frequent intense rainfall. Here, we use three independent methods to test whether initiation of postfire runoff-generated debris flows across the Western United States varies similarly with climate. Through the compilation of observed thresholds at various fires, analysis of the spatial density of observed debris flows, and quantification of feature importance at different spatial scales, we show that postfire debris-flow initiation thresholds vary systematically with short-duration rainfall-intensity climatology. The predictive power of climatological data sets that are readily available before a fire occurs offers a much-needed tool for hazard management in regions that are facing increased wildfire activity, have sparse observational history, and/or have limited resources for field-based hazard assessment. Furthermore, if the observed variation in thresholds reflects long-term adjustment of the landscape to local climate, rapid shifts in rainfall intensity related to climate change will likely induce spatially variable shifts in postfire debris-flow likelihood.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007781","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007781","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The size, frequency, and geographic scope of severe wildfires are expanding across the globe, including in the Western United States. Recently burned steeplands have an increased likelihood of debris flows, which pose hazards to downstream communities. The conditions for postfire debris-flow initiation are commonly expressed as rainfall intensity-duration thresholds, which can be estimated given sufficient observational history. However, the spread of wildfire across diverse climates poses a challenge for accurate threshold prediction in areas with limited observations. Studies of mass-movement processes in unburned areas indicate that thresholds vary with local climate, such that higher rainfall rates are required for initiation in climates characterized by frequent intense rainfall. Here, we use three independent methods to test whether initiation of postfire runoff-generated debris flows across the Western United States varies similarly with climate. Through the compilation of observed thresholds at various fires, analysis of the spatial density of observed debris flows, and quantification of feature importance at different spatial scales, we show that postfire debris-flow initiation thresholds vary systematically with short-duration rainfall-intensity climatology. The predictive power of climatological data sets that are readily available before a fire occurs offers a much-needed tool for hazard management in regions that are facing increased wildfire activity, have sparse observational history, and/or have limited resources for field-based hazard assessment. Furthermore, if the observed variation in thresholds reflects long-term adjustment of the landscape to local climate, rapid shifts in rainfall intensity related to climate change will likely induce spatially variable shifts in postfire debris-flow likelihood.