Frontispiece: Self-Optimized Reconstruction of Metal–Organic Frameworks Introduces Cation Vacancies for Selective Electrosynthesis of Hydrogen Peroxide
{"title":"Frontispiece: Self-Optimized Reconstruction of Metal–Organic Frameworks Introduces Cation Vacancies for Selective Electrosynthesis of Hydrogen Peroxide","authors":"","doi":"10.1002/ange.202582401","DOIUrl":null,"url":null,"abstract":"<p>In their Research Article (e202501930), Guohua Zhao and co-workers report a novel strategy utilizing the self-optimizing restructuring behavior of MOFs to construct cation vacancies, which effectively suppresses excessive O─O bond cleavage during oxygen activation. This strategy promotes the 2e<sup>−</sup> pathway for H<sub>2</sub>O<sub>2</sub> production (right) over the 4e<sup>−</sup> pathway generating H<sub>2</sub>O (left). By employing a solid-state electrolyte cell, direct synthesis of ultrahigh-concentration H<sub>2</sub>O<sub>2</sub> aqueous solution (>8 wt%) is achieved.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202582401","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202582401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In their Research Article (e202501930), Guohua Zhao and co-workers report a novel strategy utilizing the self-optimizing restructuring behavior of MOFs to construct cation vacancies, which effectively suppresses excessive O─O bond cleavage during oxygen activation. This strategy promotes the 2e− pathway for H2O2 production (right) over the 4e− pathway generating H2O (left). By employing a solid-state electrolyte cell, direct synthesis of ultrahigh-concentration H2O2 aqueous solution (>8 wt%) is achieved.