A Multivariable Approach of Small-Signal and Large-Signal Design Techniques in a Current Mode Series Capacitor Buck Converter for Fast Recovery

IF 3.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Prantik Majumder;Teja Golla;Santanu Kapat;Debaprasad Kastha
{"title":"A Multivariable Approach of Small-Signal and Large-Signal Design Techniques in a Current Mode Series Capacitor Buck Converter for Fast Recovery","authors":"Prantik Majumder;Teja Golla;Santanu Kapat;Debaprasad Kastha","doi":"10.1109/OJPEL.2025.3572696","DOIUrl":null,"url":null,"abstract":"Current-mode control (CMC) can achieve fast transient. performance in a series capacitor buck (SCB) converter; however, a frequency-domain design approach is insufficient to fully explore its performance potential. Using a multivariable design framework, this paper presents small-signal and large-signal design techniques for an SCB converter under one-degree-of-freedom (1DOF) and two-degree-of-freedom (2DOF) CMC implementations. In the 1DOF case, only the primary phase inductor current is sensed, whereas both inductor currents are sensed in the 2DOF case. The 2DOF design technique achieves robust compensation with fast recovery and a well-damped response. Furthermore, it is demonstrated, for the first time in an SCB converter, that employing a single voltage controller with optimal gains allows the large-signal design technique to achieve near-time-optimal recovery within the series capacitor voltage constraint while maintaining stable periodic behavior. A comparative case study highlights the effectiveness and superiority of the proposed design techniques over existing linear and nonlinear control methods. A hardware prototype of an SCB converter is implemented with a nominal <inline-formula><tex-math>$12 \\,\\mathrm{V}\\,{\\mathrm{to}}\\, 1 \\,\\mathrm{V}$</tex-math></inline-formula> input/output, <inline-formula><tex-math>$30 \\,\\mathrm{A}$</tex-math></inline-formula> load current, and <inline-formula><tex-math>$1 \\,\\mathrm{M}\\mathrm{Hz}$</tex-math></inline-formula> switching frequency. Simulated and experimental results for load and reference step transients are provided for both the 1DOF and 2DOF CMC implementations","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"983-1001"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11010895","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11010895/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Current-mode control (CMC) can achieve fast transient. performance in a series capacitor buck (SCB) converter; however, a frequency-domain design approach is insufficient to fully explore its performance potential. Using a multivariable design framework, this paper presents small-signal and large-signal design techniques for an SCB converter under one-degree-of-freedom (1DOF) and two-degree-of-freedom (2DOF) CMC implementations. In the 1DOF case, only the primary phase inductor current is sensed, whereas both inductor currents are sensed in the 2DOF case. The 2DOF design technique achieves robust compensation with fast recovery and a well-damped response. Furthermore, it is demonstrated, for the first time in an SCB converter, that employing a single voltage controller with optimal gains allows the large-signal design technique to achieve near-time-optimal recovery within the series capacitor voltage constraint while maintaining stable periodic behavior. A comparative case study highlights the effectiveness and superiority of the proposed design techniques over existing linear and nonlinear control methods. A hardware prototype of an SCB converter is implemented with a nominal $12 \,\mathrm{V}\,{\mathrm{to}}\, 1 \,\mathrm{V}$ input/output, $30 \,\mathrm{A}$ load current, and $1 \,\mathrm{M}\mathrm{Hz}$ switching frequency. Simulated and experimental results for load and reference step transients are provided for both the 1DOF and 2DOF CMC implementations
快速恢复的电流型串联电容降压变换器小信号和大信号多变量设计技术
电流模式控制(CMC)可以实现快速暂态。串联电容降压(SCB)变换器的性能;然而,仅采用频域设计方法不足以充分挖掘其性能潜力。本文采用多变量设计框架,介绍了一自由度(1DOF)和二自由度(2DOF) CMC实现下的SCB转换器的小信号和大信号设计技术。在1DOF的情况下,只感应初级相电感电流,而在2DOF的情况下感应两个电感电流。二自由度设计技术实现了鲁棒补偿、快速恢复和良好的阻尼响应。此外,首次在SCB转换器中证明,采用具有最佳增益的单个电压控制器允许大信号设计技术在串联电容器电压约束下实现近时间最优恢复,同时保持稳定的周期行为。一个比较的案例研究突出了所提出的设计技术比现有的线性和非线性控制方法的有效性和优越性。采用标称$12 \,\ mathm {V}\,{\ mathm {to}}\, 1 \,\ mathm {V}$输入/输出,$30 \,\ mathm {A}$负载电流和$1 \,\ mathm {M}\ mathm {Hz}$开关频率实现SCB变换器的硬件原型。给出了一自由度和二自由度CMC的负载瞬态和参考阶跃瞬态的仿真和实验结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信