Measurement of interfacial adhesion strength of Copper-Silicon based dielectric interfaces via laser spallation test

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Young-Min Ju , Dukyong Kim , Se-Min Lee , Heuisu Kim , Daewoong Lee , Yeon-Taek Hwang , Seung Hwan Lee , Hak-Sung Kim
{"title":"Measurement of interfacial adhesion strength of Copper-Silicon based dielectric interfaces via laser spallation test","authors":"Young-Min Ju ,&nbsp;Dukyong Kim ,&nbsp;Se-Min Lee ,&nbsp;Heuisu Kim ,&nbsp;Daewoong Lee ,&nbsp;Yeon-Taek Hwang ,&nbsp;Seung Hwan Lee ,&nbsp;Hak-Sung Kim","doi":"10.1016/j.apsadv.2025.100783","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the interfacial adhesion strength between copper (Cu) and dielectric films was investigated using laser spallation test. To quantitatively evaluate the interfacial strength, the compressive stress wave generated by laser pulse was precisely calibrated, and interface stress was analyzed through wave propagation simulation. The highest adhesion strength was observed in plasma-enhanced chemical vapor deposition (PECVD) silicon oxide (63.57±11.31 MPa), followed by PECVD silicon nitride (53.95±12.04 MPa) and low-pressure chemical vapor deposition (LPCVD) silicon nitride (26.06±6.44 MPa). Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) analysis confirmed that failure consistently occurred at the Cu/dielectric interface. The relatively high adhesion of PECVD silicon oxide was attributed to both mechanical and chemical factors. Atomic force microscopy (AFM) analysis revealed its rougher surface enhances mechanical interlocking. In addition, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) analyses confirmed the presence of hydroxyl groups (-OH) at the interface, facilitating Cu oxidation and Cu-O bond formation. Overall, this comprehensive study provides critical understanding for improving Cu/dielectric interfacial reliability in semiconductor devices.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"28 ","pages":"Article 100783"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925000911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the interfacial adhesion strength between copper (Cu) and dielectric films was investigated using laser spallation test. To quantitatively evaluate the interfacial strength, the compressive stress wave generated by laser pulse was precisely calibrated, and interface stress was analyzed through wave propagation simulation. The highest adhesion strength was observed in plasma-enhanced chemical vapor deposition (PECVD) silicon oxide (63.57±11.31 MPa), followed by PECVD silicon nitride (53.95±12.04 MPa) and low-pressure chemical vapor deposition (LPCVD) silicon nitride (26.06±6.44 MPa). Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) analysis confirmed that failure consistently occurred at the Cu/dielectric interface. The relatively high adhesion of PECVD silicon oxide was attributed to both mechanical and chemical factors. Atomic force microscopy (AFM) analysis revealed its rougher surface enhances mechanical interlocking. In addition, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) analyses confirmed the presence of hydroxyl groups (-OH) at the interface, facilitating Cu oxidation and Cu-O bond formation. Overall, this comprehensive study provides critical understanding for improving Cu/dielectric interfacial reliability in semiconductor devices.
用激光散裂试验测量铜硅基介电界面的界面粘附强度
本文采用激光散裂试验研究了铜与介质膜之间的界面粘附强度。为了定量评价界面强度,对激光脉冲产生的压应力波进行了精确标定,并通过波传播模拟对界面应力进行了分析。等离子体增强化学气相沉积(PECVD)氧化硅的附着强度最高(63.57±11.31 MPa),其次是PECVD氮化硅(53.95±12.04 MPa)和低压化学气相沉积(LPCVD)氮化硅(26.06±6.44 MPa)。扫描电镜和能谱分析(SEM-EDS)证实,Cu/介电界面的破坏持续发生。PECVD氧化硅具有较高的附着力,这是机械和化学因素共同作用的结果。原子力显微镜(AFM)分析表明,其粗糙的表面增强了机械联锁。此外,x射线光电子能谱(XPS)和傅里叶变换红外光谱(FTIR)分析证实了界面上羟基(-OH)的存在,促进了Cu氧化和Cu- o键的形成。总的来说,这项全面的研究为提高半导体器件中Cu/介电界面的可靠性提供了关键的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信