Yan Zhang , Zhiguo Su , Xuyang Qiu , He Liu , Donghui Wen , Lyujun Chen
{"title":"Distinct ARG profiles associated with class 1 integrons in municipal and industrial wastewater treatment plants","authors":"Yan Zhang , Zhiguo Su , Xuyang Qiu , He Liu , Donghui Wen , Lyujun Chen","doi":"10.1016/j.ese.2025.100586","DOIUrl":null,"url":null,"abstract":"<div><div>Class 1 integrons facilitate horizontal gene transfer, significantly influencing antibiotic resistance gene (ARG) dissemination within microbial communities. Wastewater treatment plants (WWTPs) are critical reservoirs of ARGs and integrons, yet the integron-mediated dynamics of ARG transfer across different WWTP types remain poorly understood. Here we show distinct ARG profiles associated with class 1 integrons in municipal and industrial WWTPs using a novel approach combining nested-like high-throughput qPCR and PacBio sequencing. Although industrial WWTPs contained higher absolute integron abundances, their relative ARG content was lower (1.27 × 10<sup>7</sup>–9.59 × 10<sup>7</sup> copies/ng integron) compared to municipal WWTPs (3.72 × 10<sup>7</sup>–1.98 × 10<sup>8</sup> copies/ng integron). Of the 132,084 coding sequences detected from integrons, 56.8 % encoded antibiotic resistance, with industrial plants showing lower ARG proportions, reduced ARG array diversity, and greater incorporation of non-ARG sequences. These findings suggest industrial WWTP integrons integrate a broader array of exogenous genes, reflecting adaptation to complex wastewater compositions. This work enhances our understanding of integron-driven ARG dynamics in wastewater and offers a robust strategy for environmental integron analysis.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"26 ","pages":"Article 100586"},"PeriodicalIF":14.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266649842500064X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Class 1 integrons facilitate horizontal gene transfer, significantly influencing antibiotic resistance gene (ARG) dissemination within microbial communities. Wastewater treatment plants (WWTPs) are critical reservoirs of ARGs and integrons, yet the integron-mediated dynamics of ARG transfer across different WWTP types remain poorly understood. Here we show distinct ARG profiles associated with class 1 integrons in municipal and industrial WWTPs using a novel approach combining nested-like high-throughput qPCR and PacBio sequencing. Although industrial WWTPs contained higher absolute integron abundances, their relative ARG content was lower (1.27 × 107–9.59 × 107 copies/ng integron) compared to municipal WWTPs (3.72 × 107–1.98 × 108 copies/ng integron). Of the 132,084 coding sequences detected from integrons, 56.8 % encoded antibiotic resistance, with industrial plants showing lower ARG proportions, reduced ARG array diversity, and greater incorporation of non-ARG sequences. These findings suggest industrial WWTP integrons integrate a broader array of exogenous genes, reflecting adaptation to complex wastewater compositions. This work enhances our understanding of integron-driven ARG dynamics in wastewater and offers a robust strategy for environmental integron analysis.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.