Electron beam evaporated SiO2 interfacial layer for improved CsPbI3-xBrx perovskite solar cells

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Tao Xue , Shuangpeng Li , Yuchang Chen , Xiao Wang , Pengfei Zhang , Kunping Guo , Fanghui Zhang
{"title":"Electron beam evaporated SiO2 interfacial layer for improved CsPbI3-xBrx perovskite solar cells","authors":"Tao Xue ,&nbsp;Shuangpeng Li ,&nbsp;Yuchang Chen ,&nbsp;Xiao Wang ,&nbsp;Pengfei Zhang ,&nbsp;Kunping Guo ,&nbsp;Fanghui Zhang","doi":"10.1016/j.solmat.2025.113772","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite solar cells (PSCs) have demonstrated significant advances in efficiency, yet issues such as interfacial defects and poor long-term stability remain significant barriers to their practical application. All-inorganic CsPbI<sub>3-x</sub>Br<sub>x</sub> perovskites exhibit enhanced thermal and photostability, but still suffer from severe interfacial non-radiative recombination, limiting overall device performance. In this work, we introduced a SiO<sub>2</sub> interfacial modification layer prepared via electron beam evaporation between the TiO<sub>2</sub> electron transport layer and the perovskite absorber. The introduced SiO<sub>2</sub> layer significantly improved surface wettability, enabling uniform crystallization of the perovskite films, and efficiently passivated interfacial defects, resulting in reduced interfacial recombination and enhanced photovoltaic performance. The optimized SiO<sub>2</sub>-modified device achieved a power conversion efficiency (PCE) of 13.3 %, a notable improvement over the 10.4 % of the control device, primarily due to enhanced open-circuit voltage and fill factor. Moreover, these SiO<sub>2</sub>-modified PSCs exhibited significantly enhanced ambient stability without encapsulation. This study highlights electron beam evaporation as a simple, cost-effective, and promising approach for improving the efficiency and stability of CsPbI<sub>3-x</sub>Br<sub>x</sub> perovskite solar cells.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"292 ","pages":"Article 113772"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825003733","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite solar cells (PSCs) have demonstrated significant advances in efficiency, yet issues such as interfacial defects and poor long-term stability remain significant barriers to their practical application. All-inorganic CsPbI3-xBrx perovskites exhibit enhanced thermal and photostability, but still suffer from severe interfacial non-radiative recombination, limiting overall device performance. In this work, we introduced a SiO2 interfacial modification layer prepared via electron beam evaporation between the TiO2 electron transport layer and the perovskite absorber. The introduced SiO2 layer significantly improved surface wettability, enabling uniform crystallization of the perovskite films, and efficiently passivated interfacial defects, resulting in reduced interfacial recombination and enhanced photovoltaic performance. The optimized SiO2-modified device achieved a power conversion efficiency (PCE) of 13.3 %, a notable improvement over the 10.4 % of the control device, primarily due to enhanced open-circuit voltage and fill factor. Moreover, these SiO2-modified PSCs exhibited significantly enhanced ambient stability without encapsulation. This study highlights electron beam evaporation as a simple, cost-effective, and promising approach for improving the efficiency and stability of CsPbI3-xBrx perovskite solar cells.
电子束蒸发SiO2界面层用于改进CsPbI3-xBrx钙钛矿太阳能电池
钙钛矿太阳能电池(PSCs)在效率方面取得了重大进展,但界面缺陷和长期稳定性差等问题仍然是其实际应用的重大障碍。全无机CsPbI3-xBrx钙钛矿具有增强的热稳定性和光稳定性,但仍然存在严重的界面非辐射复合,限制了器件的整体性能。在这项工作中,我们引入了在TiO2电子传输层和钙钛矿吸收剂之间通过电子束蒸发制备的SiO2界面改性层。引入的SiO2层显著提高了钙钛矿膜的表面润湿性,实现了钙钛矿膜的均匀结晶,有效钝化了界面缺陷,减少了界面复合,提高了光伏性能。优化后的sio2修饰器件的功率转换效率(PCE)为13.3%,比控制器件的10.4%有显著提高,这主要是由于开路电压和填充因子的提高。此外,这些二氧化硅修饰的PSCs在没有封装的情况下表现出显著增强的环境稳定性。这项研究强调电子束蒸发是一种简单、经济、有前途的方法,可以提高CsPbI3-xBrx钙钛矿太阳能电池的效率和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信