Engineering bacterial cell morphology for the design of robust cell factories

IF 2.3 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Maarten Lubbers, Nova Jaspers, Dennis Claessen
{"title":"Engineering bacterial cell morphology for the design of robust cell factories","authors":"Maarten Lubbers,&nbsp;Nova Jaspers,&nbsp;Dennis Claessen","doi":"10.1016/j.bbrep.2025.102076","DOIUrl":null,"url":null,"abstract":"<div><div>Bacteria come in a wide variety of shapes, ranging from spherical or rod-shaped unicellular cells to complex multicellular structures. These shapes have evolved to benefit the organism in its natural environment. However, industry often takes such organisms from their natural environment to produce useful molecules that favor mankind. Their natural morphology is often far from optimal for use in an industrial setting. Filamentous bacteria, for instance, have a morphology that presents unique challenges for industrial settings. Therefore, various engineering approaches have been developed to optimize their morphology. This review explores a spectrum of successful engineering strategies, offering insights and providing inspiration for future advancements. It holds the potential to lead the way in optimizing morphology in challenging microorganisms and thus improve their exploitability in biotechnology.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"43 ","pages":"Article 102076"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825001633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacteria come in a wide variety of shapes, ranging from spherical or rod-shaped unicellular cells to complex multicellular structures. These shapes have evolved to benefit the organism in its natural environment. However, industry often takes such organisms from their natural environment to produce useful molecules that favor mankind. Their natural morphology is often far from optimal for use in an industrial setting. Filamentous bacteria, for instance, have a morphology that presents unique challenges for industrial settings. Therefore, various engineering approaches have been developed to optimize their morphology. This review explores a spectrum of successful engineering strategies, offering insights and providing inspiration for future advancements. It holds the potential to lead the way in optimizing morphology in challenging microorganisms and thus improve their exploitability in biotechnology.
工程细菌细胞形态设计稳健的细胞工厂
细菌有各种各样的形状,从球形或棒状的单细胞到复杂的多细胞结构。这些形状的进化使生物在自然环境中受益。然而,工业经常从它们的自然环境中提取这些生物,以生产对人类有益的有用分子。它们的自然形态通常远不是工业环境中使用的最佳形态。例如,丝状细菌的形态对工业环境提出了独特的挑战。因此,开发了各种工程方法来优化其形态。这篇综述探讨了一系列成功的工程策略,为未来的发展提供了见解和灵感。它有可能在优化具有挑战性的微生物的形态方面发挥领导作用,从而提高它们在生物技术中的可利用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry and Biophysics Reports
Biochemistry and Biophysics Reports Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
191
审稿时长
59 days
期刊介绍: Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信