{"title":"Engineering bacterial cell morphology for the design of robust cell factories","authors":"Maarten Lubbers, Nova Jaspers, Dennis Claessen","doi":"10.1016/j.bbrep.2025.102076","DOIUrl":null,"url":null,"abstract":"<div><div>Bacteria come in a wide variety of shapes, ranging from spherical or rod-shaped unicellular cells to complex multicellular structures. These shapes have evolved to benefit the organism in its natural environment. However, industry often takes such organisms from their natural environment to produce useful molecules that favor mankind. Their natural morphology is often far from optimal for use in an industrial setting. Filamentous bacteria, for instance, have a morphology that presents unique challenges for industrial settings. Therefore, various engineering approaches have been developed to optimize their morphology. This review explores a spectrum of successful engineering strategies, offering insights and providing inspiration for future advancements. It holds the potential to lead the way in optimizing morphology in challenging microorganisms and thus improve their exploitability in biotechnology.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"43 ","pages":"Article 102076"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825001633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteria come in a wide variety of shapes, ranging from spherical or rod-shaped unicellular cells to complex multicellular structures. These shapes have evolved to benefit the organism in its natural environment. However, industry often takes such organisms from their natural environment to produce useful molecules that favor mankind. Their natural morphology is often far from optimal for use in an industrial setting. Filamentous bacteria, for instance, have a morphology that presents unique challenges for industrial settings. Therefore, various engineering approaches have been developed to optimize their morphology. This review explores a spectrum of successful engineering strategies, offering insights and providing inspiration for future advancements. It holds the potential to lead the way in optimizing morphology in challenging microorganisms and thus improve their exploitability in biotechnology.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.