Asif Bakshi , Khaled Ben El Kadhi , Claude Desplan
{"title":"Decoding neuronal diversity: Mechanisms governing neural cell fate in Drosophila","authors":"Asif Bakshi , Khaled Ben El Kadhi , Claude Desplan","doi":"10.1016/j.conb.2025.103061","DOIUrl":null,"url":null,"abstract":"<div><div>Generating neuronal diversity from a limited number of neural stem cells is fundamental for the proper functioning of the brain. However, the mechanisms that govern neural fate determination have long been elusive due to the intricate interplay of multiple independent factors that influence a cell's commitment to specific fates. While classical genetics and labeling tools have laid the groundwork for identifying cell types and understanding neural complexity, recent breakthroughs in single-cell transcriptomics and whole-brain connectomics represent a significant advancement in enabling a comprehensive characterization of brain cell types and the underlying mechanisms that encode these neuronal identities. This review focuses on recent developments in our understanding of neural cell fate determination in <em>Drosophila</em>, emphasizing three key mechanisms: spatial patterning, temporal patterning, and neuron-type specific terminal selector transcription factors.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"93 ","pages":"Article 103061"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438825000923","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Generating neuronal diversity from a limited number of neural stem cells is fundamental for the proper functioning of the brain. However, the mechanisms that govern neural fate determination have long been elusive due to the intricate interplay of multiple independent factors that influence a cell's commitment to specific fates. While classical genetics and labeling tools have laid the groundwork for identifying cell types and understanding neural complexity, recent breakthroughs in single-cell transcriptomics and whole-brain connectomics represent a significant advancement in enabling a comprehensive characterization of brain cell types and the underlying mechanisms that encode these neuronal identities. This review focuses on recent developments in our understanding of neural cell fate determination in Drosophila, emphasizing three key mechanisms: spatial patterning, temporal patterning, and neuron-type specific terminal selector transcription factors.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience