From nonlinear Schrödinger equation to interacting particle system

IF 2.3 2区 数学 Q1 MATHEMATICS
Weiwei Ao, Juntao Lv, Kelei Wang
{"title":"From nonlinear Schrödinger equation to interacting particle system","authors":"Weiwei Ao,&nbsp;Juntao Lv,&nbsp;Kelei Wang","doi":"10.1016/j.jde.2025.113509","DOIUrl":null,"url":null,"abstract":"<div><div>We study the limiting behavior of solutions to nonlinear Schrödinger equations<span><span><span><math><mo>−</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>+</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>=</mo><msubsup><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>&gt;</mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo></math></span></span></span> as <span><math><mi>ε</mi><mo>→</mo><mn>0</mn></math></span>, where <em>p</em> is Sobolev subcritical. These solutions are assumed to have infinitely many peaks. We derive the interaction form between the limiting peak points. This is achieved by first describing the main order term of <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub></math></span> and providing a very precise estimate on the error by the reverse Lyapunov-Schmidt reduction method, and then extracting information from the reduction equation in a limiting way.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"442 ","pages":"Article 113509"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005364","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the limiting behavior of solutions to nonlinear Schrödinger equationsε2Δuε+uε=uεp,uε>0inRn, as ε0, where p is Sobolev subcritical. These solutions are assumed to have infinitely many peaks. We derive the interaction form between the limiting peak points. This is achieved by first describing the main order term of uε and providing a very precise estimate on the error by the reverse Lyapunov-Schmidt reduction method, and then extracting information from the reduction equation in a limiting way.
从非线性Schrödinger方程到相互作用粒子系统
研究了一类非线性Schrödinger方程- ε2Δuε+uε=uεp,uε>0inRn, ε→0时解的极限行为,其中p为Sobolev次临界。假设这些解有无穷多个峰。导出了极限峰点之间的相互作用形式。这是通过首先描述uε的主阶项,并通过反向Lyapunov-Schmidt约简方法提供非常精确的误差估计,然后以极限方式从约简方程中提取信息来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信