Development and comparative analysis of a GAA nanosheet FET across diverse space charge region materials for nanoscale applications

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Asisa Kumar Panigrahy , Ritesh Rastogi , Pulla Reddy Avula , Sagar Kolekar , Kapil Joshi , Raghunandan Swain
{"title":"Development and comparative analysis of a GAA nanosheet FET across diverse space charge region materials for nanoscale applications","authors":"Asisa Kumar Panigrahy ,&nbsp;Ritesh Rastogi ,&nbsp;Pulla Reddy Avula ,&nbsp;Sagar Kolekar ,&nbsp;Kapil Joshi ,&nbsp;Raghunandan Swain","doi":"10.1016/j.micrna.2025.208239","DOIUrl":null,"url":null,"abstract":"<div><div>Gate-All-Around (GAA) FETs currently dominate the industry due to their primary benefit of reduced overall FET size and enhanced gate electrostatic integrity over the channel from all directions. This study presents a comparative analysis of 10 nm FinFET and nanosheet FET (NS-FET) architectures designed using GAA and fully depleted Silicon-On-Insulator (FD-SOI) technologies. The NS-FETs feature dual-channel structures with uniform doping profiles and various spacer region configurations, including single-K materials (Air, SiO<sub>2</sub>) and dual-K combinations (HfO<sub>2</sub>+SiO<sub>2</sub>, Nitride + HfO<sub>2</sub>). A comprehensive evaluation of key performance parameters, including transfer characteristics, threshold voltage, switching ratio, Drain-Induced Barrier Lowering (DIBL), and subthreshold swing (SS), was conducted. Results indicate that NS-FETs demonstrate significant reduction of SCEs compared to FinFETs, with DIBL reductions of 65.34 %, 59.37 %, 81.43 %, and 83.19 %, and SS improvements of 5.28 %, 0.92 %, 0.02 %, and 2.68 % for SiO<sub>2</sub>, HfO<sub>2</sub>+SiO<sub>2</sub>, Nitride + HfO<sub>2</sub>, and Air spacers, respectively. Notably, single-K spacers yielded higher <em>I</em><sub><em>ON</em></sub><em>/I</em><sub><em>OFF</em></sub> ratios. These findings confirm that strategic spacer material engineering in NS-FETs effectively minimizes leakage currents, thereby enhancing device performance for ultra-scaled, low-power applications.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"206 ","pages":"Article 208239"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Gate-All-Around (GAA) FETs currently dominate the industry due to their primary benefit of reduced overall FET size and enhanced gate electrostatic integrity over the channel from all directions. This study presents a comparative analysis of 10 nm FinFET and nanosheet FET (NS-FET) architectures designed using GAA and fully depleted Silicon-On-Insulator (FD-SOI) technologies. The NS-FETs feature dual-channel structures with uniform doping profiles and various spacer region configurations, including single-K materials (Air, SiO2) and dual-K combinations (HfO2+SiO2, Nitride + HfO2). A comprehensive evaluation of key performance parameters, including transfer characteristics, threshold voltage, switching ratio, Drain-Induced Barrier Lowering (DIBL), and subthreshold swing (SS), was conducted. Results indicate that NS-FETs demonstrate significant reduction of SCEs compared to FinFETs, with DIBL reductions of 65.34 %, 59.37 %, 81.43 %, and 83.19 %, and SS improvements of 5.28 %, 0.92 %, 0.02 %, and 2.68 % for SiO2, HfO2+SiO2, Nitride + HfO2, and Air spacers, respectively. Notably, single-K spacers yielded higher ION/IOFF ratios. These findings confirm that strategic spacer material engineering in NS-FETs effectively minimizes leakage currents, thereby enhancing device performance for ultra-scaled, low-power applications.
基于不同空间电荷区材料的GAA纳米片场效应管的开发与比较分析
栅极全能(GAA)场效应管目前主导着整个行业,因为它们的主要优点是减小了整体场效应管的尺寸,并从各个方向增强了通道上的栅极静电完整性。本研究对采用GAA和完全耗尽绝缘体上硅(FD-SOI)技术设计的10纳米FinFET和纳米片FET (NS-FET)架构进行了比较分析。ns - fet具有均匀掺杂的双通道结构和各种间隔区配置,包括单k材料(Air, SiO2)和双k组合(HfO2+SiO2,氮化物+ HfO2)。对关键性能参数进行了综合评估,包括转移特性、阈值电压、开关比、漏极诱导势垒降低(DIBL)和阈下摆幅(SS)。结果表明,与finfet相比,ns - fet的sce显著降低,其中SiO2、HfO2+SiO2、氮化物+ HfO2和Air spacers的DIBL分别降低了65.34%、59.37%、81.43%和83.19%,SS分别提高了5.28%、0.92%、0.02%和2.68%。值得注意的是,单k间隔产生了更高的离子/IOFF比率。这些发现证实,ns - fet中的战略性间隔材料工程有效地减少了泄漏电流,从而提高了超大尺寸、低功耗应用的器件性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信