John Bamberg, Alice Devillers, Mark Ioppolo, Cheryl E. Praeger
{"title":"Codes and designs in Johnson graphs from symplectic actions on quadratic forms","authors":"John Bamberg, Alice Devillers, Mark Ioppolo, Cheryl E. Praeger","doi":"10.1016/j.jpaa.2025.108015","DOIUrl":null,"url":null,"abstract":"<div><div>The Johnson graph <span><math><mi>J</mi><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> has as vertices the <em>k</em>-subsets of <span><math><mi>V</mi><mo>=</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>v</mi><mo>}</mo></math></span>, and two vertices are joined by an edge if their intersection has size <span><math><mi>k</mi><mo>−</mo><mn>1</mn></math></span>. An <em>X-strongly incidence-transitive code</em> in <span><math><mi>J</mi><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is a proper vertex subset Γ such that the subgroup <em>X</em> of graph automorphisms leaving Γ invariant is transitive on the set Γ of ‘codewords’, and for each codeword Δ, the setwise stabiliser <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>Δ</mi></mrow></msub></math></span> is transitive on <span><math><mi>Δ</mi><mo>×</mo><mo>(</mo><mi>V</mi><mo>∖</mo><mi>Δ</mi><mo>)</mo></math></span>. We classify the <em>X-strongly incidence-transitive codes</em> in <span><math><mi>J</mi><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> for which <em>X</em> is the symplectic group <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mn>2</mn><mo>)</mo></math></span> acting as a 2-transitive permutation group of degree <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>±</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, where the stabiliser <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>Δ</mi></mrow></msub></math></span> of a codeword Δ is contained in a <em>geometric</em> maximal subgroup of <em>X</em>. In particular, we construct two new infinite families of strongly incidence-transitive codes associated with the reducible maximal subgroups of <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mn>2</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 9","pages":"Article 108015"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001549","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Johnson graph has as vertices the k-subsets of , and two vertices are joined by an edge if their intersection has size . An X-strongly incidence-transitive code in is a proper vertex subset Γ such that the subgroup X of graph automorphisms leaving Γ invariant is transitive on the set Γ of ‘codewords’, and for each codeword Δ, the setwise stabiliser is transitive on . We classify the X-strongly incidence-transitive codes in for which X is the symplectic group acting as a 2-transitive permutation group of degree , where the stabiliser of a codeword Δ is contained in a geometric maximal subgroup of X. In particular, we construct two new infinite families of strongly incidence-transitive codes associated with the reducible maximal subgroups of .
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.