Codes and designs in Johnson graphs from symplectic actions on quadratic forms

IF 0.7 2区 数学 Q2 MATHEMATICS
John Bamberg, Alice Devillers, Mark Ioppolo, Cheryl E. Praeger
{"title":"Codes and designs in Johnson graphs from symplectic actions on quadratic forms","authors":"John Bamberg,&nbsp;Alice Devillers,&nbsp;Mark Ioppolo,&nbsp;Cheryl E. Praeger","doi":"10.1016/j.jpaa.2025.108015","DOIUrl":null,"url":null,"abstract":"<div><div>The Johnson graph <span><math><mi>J</mi><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> has as vertices the <em>k</em>-subsets of <span><math><mi>V</mi><mo>=</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>v</mi><mo>}</mo></math></span>, and two vertices are joined by an edge if their intersection has size <span><math><mi>k</mi><mo>−</mo><mn>1</mn></math></span>. An <em>X-strongly incidence-transitive code</em> in <span><math><mi>J</mi><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is a proper vertex subset Γ such that the subgroup <em>X</em> of graph automorphisms leaving Γ invariant is transitive on the set Γ of ‘codewords’, and for each codeword Δ, the setwise stabiliser <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>Δ</mi></mrow></msub></math></span> is transitive on <span><math><mi>Δ</mi><mo>×</mo><mo>(</mo><mi>V</mi><mo>∖</mo><mi>Δ</mi><mo>)</mo></math></span>. We classify the <em>X-strongly incidence-transitive codes</em> in <span><math><mi>J</mi><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> for which <em>X</em> is the symplectic group <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mn>2</mn><mo>)</mo></math></span> acting as a 2-transitive permutation group of degree <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>±</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, where the stabiliser <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>Δ</mi></mrow></msub></math></span> of a codeword Δ is contained in a <em>geometric</em> maximal subgroup of <em>X</em>. In particular, we construct two new infinite families of strongly incidence-transitive codes associated with the reducible maximal subgroups of <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mn>2</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 9","pages":"Article 108015"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001549","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Johnson graph J(v,k) has as vertices the k-subsets of V={1,,v}, and two vertices are joined by an edge if their intersection has size k1. An X-strongly incidence-transitive code in J(v,k) is a proper vertex subset Γ such that the subgroup X of graph automorphisms leaving Γ invariant is transitive on the set Γ of ‘codewords’, and for each codeword Δ, the setwise stabiliser XΔ is transitive on Δ×(VΔ). We classify the X-strongly incidence-transitive codes in J(v,k) for which X is the symplectic group Sp2n(2) acting as a 2-transitive permutation group of degree 22n1±2n1, where the stabiliser XΔ of a codeword Δ is contained in a geometric maximal subgroup of X. In particular, we construct two new infinite families of strongly incidence-transitive codes associated with the reducible maximal subgroups of Sp2n(2).
二次型上的辛作用在Johnson图中的码与设计
Johnson图J(v,k)的顶点为v ={1,…,v}的k个子集,如果两个顶点相交的大小为k−1,则两个顶点由一条边连接。J(v,k)中的X强关联传递码是一个适当的顶点子集Γ,使得保持Γ不变的图自同态的子群X在‘码字’的集合Γ上是可传递的,并且对于每个码字Δ,集合稳定器XΔ在Δ×(v∈Δ)上是可传递的。我们对J(v,k)中X强关联传递码进行了分类,其中X是辛群Sp2n(2),作为2-传递置换群的次数为22n−1±2n−1,其中码字Δ的稳定子XΔ包含在X的几何极大子群中,特别是构造了与Sp2n(2)的可约极大子群相关的两个新的强关联传递码无穷族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信