{"title":"An assessment of germane and tin tetrachloride for GeSn epitaxy","authors":"J.M. Hartmann, T. Marion","doi":"10.1016/j.jcrysgro.2025.128280","DOIUrl":null,"url":null,"abstract":"<div><div>We have screened at 325 °C chamber pressures, precursor flows and H<sub>2</sub> carrier flows to overcome some of the limitations encountered when growing GeSn layers with a GeH<sub>4</sub> + SnCl<sub>4</sub> + H<sub>2</sub> chemistry (e.g. a reduced Sn content compared to Ge<sub>2</sub>H<sub>6</sub>, a definite lack of uniformity at 400 Torr and so on). Layers grown at 300 Torr and 400 Torr were smooth and of high crystalline quality provided that GeH<sub>4</sub> and SnCl<sub>4</sub> flows were high and low enough, respectively. Meanwhile, layers grown at 100 Torr and 200 Torr were milky and of lesser quality. The best tradeoff in terms of GeSn growth rates, Sn contents and layer uniformity, which was vastly improved, was reached at 300 Torr. A halving of the H<sub>2</sub> carrier flow yielded even higher growth rates and Sn concentrations. Over the 301 °C–349 °C range, we succeeded in depositing, at 300 Torr, layers with growth rates that were similar to that with our reference Ge<sub>2</sub>H<sub>6</sub> + SnCl<sub>4</sub> process (at 100 Torr). Activation energies associated to the growth rate increase with the temperature were slightly higher with GeH<sub>4</sub> than with Ge<sub>2</sub>H<sub>6</sub> (12–13 kcal. mol.<sup>−1</sup> versus 10 kcal. mol.<sup>−1</sup>). Meanwhile, Sn contents did not drop as fast, as the temperature increased, with GeH<sub>4</sub> than with Ge<sub>2</sub>H<sub>6</sub> (−1.1 %/10 °C versus −1.6 %/10 °C slopes). The highest Sn content achievable with our curent GeH<sub>4</sub> process conditions was otherwise not as high than with Ge<sub>2</sub>H<sub>6</sub>, however (10.3 % versus 14.2 %). Switching to temperatures lower than 301 °C to reach even higher Sn contents was unfortunately not an option with our current GeH<sub>4</sub> + SnCl<sub>4</sub> + H<sub>2</sub> process, as layers were islanded, then.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"667 ","pages":"Article 128280"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024825002349","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
We have screened at 325 °C chamber pressures, precursor flows and H2 carrier flows to overcome some of the limitations encountered when growing GeSn layers with a GeH4 + SnCl4 + H2 chemistry (e.g. a reduced Sn content compared to Ge2H6, a definite lack of uniformity at 400 Torr and so on). Layers grown at 300 Torr and 400 Torr were smooth and of high crystalline quality provided that GeH4 and SnCl4 flows were high and low enough, respectively. Meanwhile, layers grown at 100 Torr and 200 Torr were milky and of lesser quality. The best tradeoff in terms of GeSn growth rates, Sn contents and layer uniformity, which was vastly improved, was reached at 300 Torr. A halving of the H2 carrier flow yielded even higher growth rates and Sn concentrations. Over the 301 °C–349 °C range, we succeeded in depositing, at 300 Torr, layers with growth rates that were similar to that with our reference Ge2H6 + SnCl4 process (at 100 Torr). Activation energies associated to the growth rate increase with the temperature were slightly higher with GeH4 than with Ge2H6 (12–13 kcal. mol.−1 versus 10 kcal. mol.−1). Meanwhile, Sn contents did not drop as fast, as the temperature increased, with GeH4 than with Ge2H6 (−1.1 %/10 °C versus −1.6 %/10 °C slopes). The highest Sn content achievable with our curent GeH4 process conditions was otherwise not as high than with Ge2H6, however (10.3 % versus 14.2 %). Switching to temperatures lower than 301 °C to reach even higher Sn contents was unfortunately not an option with our current GeH4 + SnCl4 + H2 process, as layers were islanded, then.
期刊介绍:
The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.