Xiaoying Hao , Wenbi Feng , Ying Tang , Xueluer Mu , Yongxian Zhao , Yingxi Lu , Xianfeng Zhou
{"title":"Decoding the heavy atom effect and Spin–orbit coupling in D-A Molecules: Synergy or Antagonism in facilitating intersystem crossing","authors":"Xiaoying Hao , Wenbi Feng , Ying Tang , Xueluer Mu , Yongxian Zhao , Yingxi Lu , Xianfeng Zhou","doi":"10.1016/j.dyepig.2025.112951","DOIUrl":null,"url":null,"abstract":"<div><div>Intersystem crossing (ISC) of triple photosensitizers (PSs) often hinges on enhanced spin−orbit coupling (SOC), typically achieved by incorporating heavy atoms or designing orthogonal donor-acceptor (D-A) dyads. Herein, we explore the synergistic potential of both strategies by integrating a heavy atom and an orthogonal D-A structure within a single PS framework. Specifically, orthogonal heptamethine cyanine (OrT-Cy7-H) is halogenated to yield OrT-Cy7-Cl and OrT-Cy7-Br via molecular engineering. Through theoretical calculations and time-resolved spectroscopy, the ISC of OrT-Cy7-Br is confirmed to be derived from the bromine substitution and the nearly orthogonal D-A structure. Interestingly, the incorporation of bromine enhances molecular aggregation and promotes non-radiative decay through intermolecular collisions. When formulated into nanoparticles, OrT-Cy7-Br exhibits efficient combined photodynamic and photothermal therapeutic effects, underscoring the critical role of both molecular structure and intermolecular interactions in shaping the photophysical properties of PSs. These findings offer valuable insights into the design of next-generation PSs for advanced cancer therapy.</div></div>","PeriodicalId":302,"journal":{"name":"Dyes and Pigments","volume":"242 ","pages":"Article 112951"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dyes and Pigments","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143720825003213","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Intersystem crossing (ISC) of triple photosensitizers (PSs) often hinges on enhanced spin−orbit coupling (SOC), typically achieved by incorporating heavy atoms or designing orthogonal donor-acceptor (D-A) dyads. Herein, we explore the synergistic potential of both strategies by integrating a heavy atom and an orthogonal D-A structure within a single PS framework. Specifically, orthogonal heptamethine cyanine (OrT-Cy7-H) is halogenated to yield OrT-Cy7-Cl and OrT-Cy7-Br via molecular engineering. Through theoretical calculations and time-resolved spectroscopy, the ISC of OrT-Cy7-Br is confirmed to be derived from the bromine substitution and the nearly orthogonal D-A structure. Interestingly, the incorporation of bromine enhances molecular aggregation and promotes non-radiative decay through intermolecular collisions. When formulated into nanoparticles, OrT-Cy7-Br exhibits efficient combined photodynamic and photothermal therapeutic effects, underscoring the critical role of both molecular structure and intermolecular interactions in shaping the photophysical properties of PSs. These findings offer valuable insights into the design of next-generation PSs for advanced cancer therapy.
期刊介绍:
Dyes and Pigments covers the scientific and technical aspects of the chemistry and physics of dyes, pigments and their intermediates. Emphasis is placed on the properties of the colouring matters themselves rather than on their applications or the system in which they may be applied.
Thus the journal accepts research and review papers on the synthesis of dyes, pigments and intermediates, their physical or chemical properties, e.g. spectroscopic, surface, solution or solid state characteristics, the physical aspects of their preparation, e.g. precipitation, nucleation and growth, crystal formation, liquid crystalline characteristics, their photochemical, ecological or biological properties and the relationship between colour and chemical constitution. However, papers are considered which deal with the more fundamental aspects of colourant application and of the interactions of colourants with substrates or media.
The journal will interest a wide variety of workers in a range of disciplines whose work involves dyes, pigments and their intermediates, and provides a platform for investigators with common interests but diverse fields of activity such as cosmetics, reprographics, dye and pigment synthesis, medical research, polymers, etc.