High-Coverage Ce(OH)₃-Decorated NiFe Layered Double Hydroxide for Durable Seawater Oxidation at Ampere-Scale Current Densities

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-06-05 DOI:10.1002/smll.202505219
Xiang Fang, Chun Ye, Weihua Zhuang, Yufan Yang, Shaohuan Hong, Shengjun Sun, Xun He, Fatma A. Ibrahim, Mohamed S. Hamdy, Feng Gong, Yongchao Yao, Xuping Sun, Wenchuang (Walter) Hu
{"title":"High-Coverage Ce(OH)₃-Decorated NiFe Layered Double Hydroxide for Durable Seawater Oxidation at Ampere-Scale Current Densities","authors":"Xiang Fang, Chun Ye, Weihua Zhuang, Yufan Yang, Shaohuan Hong, Shengjun Sun, Xun He, Fatma A. Ibrahim, Mohamed S. Hamdy, Feng Gong, Yongchao Yao, Xuping Sun, Wenchuang (Walter) Hu","doi":"10.1002/smll.202505219","DOIUrl":null,"url":null,"abstract":"Seawater electrolysis powered by offshore renewable energy, provides an attractive approach for green hydrogen production. Yet, the abundant chloride ions (Cl⁻) in seawater pose severe challenges to the long-term stability of anode materials, particularly under industrial current densities. Herein, a high-coverage Ce(OH)₃-decorated nickel-iron layered double hydroxide (NiFe LDH) electrocatalyst is reported, in which Ce(OH)₃ undergoes in situ transformation into CeO₂ during alkaline seawater oxidation (ASO), forming a robust protective layer that effectively repels Cl⁻. The as-prepared catalyst delivers an overpotential of only 321 mV at 1 A cm⁻<sup>2</sup> and maintains exceptional operational stability for over 1000 h with negligible chlorine evolution. Furthermore, the catalyst exhibits accelerated bubble detachment behavior, facilitating rapid gas release and effectively reducing mass transfer resistance during ASO.","PeriodicalId":228,"journal":{"name":"Small","volume":"59 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202505219","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Seawater electrolysis powered by offshore renewable energy, provides an attractive approach for green hydrogen production. Yet, the abundant chloride ions (Cl⁻) in seawater pose severe challenges to the long-term stability of anode materials, particularly under industrial current densities. Herein, a high-coverage Ce(OH)₃-decorated nickel-iron layered double hydroxide (NiFe LDH) electrocatalyst is reported, in which Ce(OH)₃ undergoes in situ transformation into CeO₂ during alkaline seawater oxidation (ASO), forming a robust protective layer that effectively repels Cl⁻. The as-prepared catalyst delivers an overpotential of only 321 mV at 1 A cm⁻2 and maintains exceptional operational stability for over 1000 h with negligible chlorine evolution. Furthermore, the catalyst exhibits accelerated bubble detachment behavior, facilitating rapid gas release and effectively reducing mass transfer resistance during ASO.

Abstract Image

高覆盖Ce(OH)₃-装饰NiFe层状双氢氧化物在安培级电流密度下持久的海水氧化
海洋可再生能源驱动的海水电解为绿色制氢提供了一种有吸引力的方法。然而,海水中大量的氯离子(Cl⁻)对阳极材料的长期稳定性构成了严峻的挑战,特别是在工业电流密度下。本文报道了一种高覆盖率的Ce(OH)₃修饰的镍铁层状双氢氧化物(NiFe LDH)电催化剂,其中Ce(OH)₃在碱性海水氧化(ASO)过程中原位转化为CeO 2,形成一个坚固的保护层,有效地抵抗Cl⁻。制备的催化剂在1 A cm - 2时的过电位仅为321 mV,并且在1000小时以上的时间内保持卓越的运行稳定性,氯的释放可以忽略不计。此外,该催化剂表现出加速的气泡脱离行为,促进了气体的快速释放,有效地降低了ASO过程中的传质阻力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信