Sulfur-doped porous carbon nanosheets from ice template-induced assembly of sulfonated naphthalene for lithium-ion battery anodes

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xue Yang , Baolin Xing , Huihui Zeng , Xiaoxiao Qu , Feng Shi , Jiushuai Deng , Guangxu Huang , Chuanxiang Zhang
{"title":"Sulfur-doped porous carbon nanosheets from ice template-induced assembly of sulfonated naphthalene for lithium-ion battery anodes","authors":"Xue Yang ,&nbsp;Baolin Xing ,&nbsp;Huihui Zeng ,&nbsp;Xiaoxiao Qu ,&nbsp;Feng Shi ,&nbsp;Jiushuai Deng ,&nbsp;Guangxu Huang ,&nbsp;Chuanxiang Zhang","doi":"10.1016/j.apsusc.2025.163748","DOIUrl":null,"url":null,"abstract":"<div><div>Porous carbon nanosheets (PCNSs) containing both sheet-like structure and porous architecture are considered promising candidates as anode materials for lithium-ion batteries (LIBs). In this work, sulfur-doped porous carbon nanosheets (SPCNSs) are prepared via an ice template-induced assembly coupled with carbonization strategy employing low-cost sulfonated naphthalene as a precursor. During freezing, sulfonated naphthalene molecules arrange along the directional growth of ice crystals, forming sheet-like morphology which is preserved after sublimation of ice. Subsequent carbonization induces polymerization of these molecules, enabling their assembly into large-area carbon nanosheets. The prepared SPCNSs have well-developed porous structure with substantial specific surface area (831.7 m<sup>2</sup>/g) and pore volume (0.613 cm<sup>3</sup>/g), large transverse size nanosheets and ultrahigh S doping (7.33 at%). The SPCNSs applied as anode materials for LIBs present an initial high reversible capacity (2027 mAh/g at 0.1 A/g), excellent rate capability (258 mAh/g at 2.0 A/g), and outstanding cycling stability (438 mAh/g at 1.0 A/g after 600 cycles). This study provides a green and effective route to produce SPCNSs via the assembly of molecules sulfonated naphthalene in an ice template, demonstrating promising industrial application potential as anode materials for LIBs.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"708 ","pages":"Article 163748"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225014631","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Porous carbon nanosheets (PCNSs) containing both sheet-like structure and porous architecture are considered promising candidates as anode materials for lithium-ion batteries (LIBs). In this work, sulfur-doped porous carbon nanosheets (SPCNSs) are prepared via an ice template-induced assembly coupled with carbonization strategy employing low-cost sulfonated naphthalene as a precursor. During freezing, sulfonated naphthalene molecules arrange along the directional growth of ice crystals, forming sheet-like morphology which is preserved after sublimation of ice. Subsequent carbonization induces polymerization of these molecules, enabling their assembly into large-area carbon nanosheets. The prepared SPCNSs have well-developed porous structure with substantial specific surface area (831.7 m2/g) and pore volume (0.613 cm3/g), large transverse size nanosheets and ultrahigh S doping (7.33 at%). The SPCNSs applied as anode materials for LIBs present an initial high reversible capacity (2027 mAh/g at 0.1 A/g), excellent rate capability (258 mAh/g at 2.0 A/g), and outstanding cycling stability (438 mAh/g at 1.0 A/g after 600 cycles). This study provides a green and effective route to produce SPCNSs via the assembly of molecules sulfonated naphthalene in an ice template, demonstrating promising industrial application potential as anode materials for LIBs.

Abstract Image

Abstract Image

用冰模板诱导组装磺化萘制备硫掺杂多孔碳纳米片用于锂离子电池阳极
具有片状结构和多孔结构的多孔碳纳米片(PCNSs)被认为是锂离子电池(LIBs)极具潜力的负极材料。在这项工作中,采用低成本磺化萘作为前驱体,通过冰模板诱导组装和碳化策略制备了硫掺杂多孔碳纳米片(SPCNSs)。在冷冻过程中,磺化萘分子沿着冰晶的定向生长排列,形成片状形态,在冰升华后保存下来。随后的碳化引起这些分子的聚合,使它们能够组装成大面积的碳纳米片。制备的SPCNSs具有良好的孔结构,具有较大的比表面积(831.7 m2/g)和孔体积(0.613 cm3/g),大的横向纳米片尺寸和超高的S掺杂(7.33 at%)。SPCNSs作为锂离子电池的负极材料,具有初始高可逆容量(0.1 A/g时2027 mAh/g),优异的倍率容量(2.0 A/g时258 mAh/g)和出色的循环稳定性(600次循环后1.0 A/g时438 mAh/g)。该研究提供了一种绿色有效的途径,通过在冰模板中组装磺化萘分子来生产SPCNSs,显示了作为lib负极材料的良好工业应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信