Scott A M McAdam, Anju Manandhar, Ian M Rimer, Daniela Aros-Mualin
{"title":"Exclusive and hypersensitive stomatal control by blue-light in Equisetum","authors":"Scott A M McAdam, Anju Manandhar, Ian M Rimer, Daniela Aros-Mualin","doi":"10.1093/plphys/kiaf238","DOIUrl":null,"url":null,"abstract":"Most ferns are adapted to lower-light environments and have relatively low rates of leaf gas exchange compared to seed plants. Recent studies suggest that certain fern groups adapted to full-sun, yet ever-wet, environments have evolved novel stomatal regulatory mechanisms, particularly in response to light, enabling higher rates of leaf gas exchange. Among these lineages, the genus Equisetum, a morphologically and ecologically distinctive group of ferns, remains poorly understood in terms of stomatal physiology. Here, we investigated stomatal control by light in Equisetum by combining observations of stomatal conductance in the field with measurements of canopy conductance in a controlled environment and stem-level gas exchange responses to varying wavelengths and intensities of light. We found that Equisetum stomatal closure in the dark occurs over five minutes, which is extremely fast compared to other ferns. Additionally, Equisetum has lost a stomatal response to red light, with stomata exclusively regulated by blue light. This novel regulation of stomata by blue light and rapid stomatal closure in the dark results in strong co-ordination between canopy conductance and light intensity at the end of the day. Our results have implications for understanding the regulation of stomata by light and suggest that there is considerable ecologically relevant diversity in stomatal regulation within ferns.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"18 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf238","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Most ferns are adapted to lower-light environments and have relatively low rates of leaf gas exchange compared to seed plants. Recent studies suggest that certain fern groups adapted to full-sun, yet ever-wet, environments have evolved novel stomatal regulatory mechanisms, particularly in response to light, enabling higher rates of leaf gas exchange. Among these lineages, the genus Equisetum, a morphologically and ecologically distinctive group of ferns, remains poorly understood in terms of stomatal physiology. Here, we investigated stomatal control by light in Equisetum by combining observations of stomatal conductance in the field with measurements of canopy conductance in a controlled environment and stem-level gas exchange responses to varying wavelengths and intensities of light. We found that Equisetum stomatal closure in the dark occurs over five minutes, which is extremely fast compared to other ferns. Additionally, Equisetum has lost a stomatal response to red light, with stomata exclusively regulated by blue light. This novel regulation of stomata by blue light and rapid stomatal closure in the dark results in strong co-ordination between canopy conductance and light intensity at the end of the day. Our results have implications for understanding the regulation of stomata by light and suggest that there is considerable ecologically relevant diversity in stomatal regulation within ferns.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.