Xiangyu Gong, Zhang Wen, Zixie Liang, Hugh Xiao, Sein Lee, Alejandro Rossello‐Martinez, Qinzhe Xing, Thomas Wright, Ryan Y. Nguyen, Michael Mak
{"title":"Instant assembly of collagen for tissue engineering and bioprinting","authors":"Xiangyu Gong, Zhang Wen, Zixie Liang, Hugh Xiao, Sein Lee, Alejandro Rossello‐Martinez, Qinzhe Xing, Thomas Wright, Ryan Y. Nguyen, Michael Mak","doi":"10.1038/s41563-025-02241-7","DOIUrl":null,"url":null,"abstract":"<p>Engineering functional cellular tissue components holds great promise in regenerative medicine. Collagen I, a key scaffolding material in bodily tissues, presents challenges in controlling its assembly kinetics in a biocompatible manner in vitro, restricting its use as a primary scaffold or adhesive in cellular biofabrication. Here we report a collagen fabrication method termed as tunable rapid assembly of collagenous elements that leverages macromolecular crowding to achieve the instant assembly of unmodified collagen. By applying an inert crowder to accelerate the liquid–gel transition of collagen, our method enables the high-throughput creation of physiological collagen constructs across length scales—from micro to macro—and facilitates cell self-assembly and morphogenesis through the generation of tunable multiscale architectural cues. With high biocompatibility and rapid gelation kinetics, the tunable rapid assembly of collagenous elements method also offers a versatile bioprinting approach for collagen over a wide concentration range, enabling the direct printing of cellular tissues using pH-neutral, bioactive collagen bioinks and achieving both structural complexity and biofunctionality. This work broadens the scope of controllable multiscale biofabrication for tissues across various organ systems using unmodified collagen.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"25 1","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02241-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Engineering functional cellular tissue components holds great promise in regenerative medicine. Collagen I, a key scaffolding material in bodily tissues, presents challenges in controlling its assembly kinetics in a biocompatible manner in vitro, restricting its use as a primary scaffold or adhesive in cellular biofabrication. Here we report a collagen fabrication method termed as tunable rapid assembly of collagenous elements that leverages macromolecular crowding to achieve the instant assembly of unmodified collagen. By applying an inert crowder to accelerate the liquid–gel transition of collagen, our method enables the high-throughput creation of physiological collagen constructs across length scales—from micro to macro—and facilitates cell self-assembly and morphogenesis through the generation of tunable multiscale architectural cues. With high biocompatibility and rapid gelation kinetics, the tunable rapid assembly of collagenous elements method also offers a versatile bioprinting approach for collagen over a wide concentration range, enabling the direct printing of cellular tissues using pH-neutral, bioactive collagen bioinks and achieving both structural complexity and biofunctionality. This work broadens the scope of controllable multiscale biofabrication for tissues across various organ systems using unmodified collagen.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.