Random field image representations speed up binary discrimination of brain scans and estimate a phenotype glioblastoma cancer cell model.

William D ONeill, Julian Najera, Meenal Datta
{"title":"Random field image representations speed up binary discrimination of brain scans and estimate a phenotype glioblastoma cancer cell model.","authors":"William D ONeill, Julian Najera, Meenal Datta","doi":"10.21203/rs.3.rs-6641557/v1","DOIUrl":null,"url":null,"abstract":"<p><p>MRI brain scans alone are not a definitive measure of dementia. Deep-learning algorithms (DLA) and professional human opinion are necessary for diagnosis. Yet, sample sizes are prohibitively large to train a typical DLA, which itself takes considerable computation time to produce diagnostically useful information from contrasting image features. We introduce analytic simplifications to this process to speed it up and reduce data requirements by modeling individual images as solutions of spatially autoregressive (AR) partial difference equations. Image features are the unique individual image AR parameters. Spatially lagged image pixels are explanatory variables for estimating a random-field representation (RFR) of the proposed AR difference equation. RFR model parameters are also those of the image autocorrelation function (ACF). An image pixel matrix-to-vector transformation allows AR parameters to be estimated by ordinary least squares (OLS) regression in millisecond time. Regression degrees of freedom (DOF) -- the number of image pixels -- are unusually large, leading to remarkably precise estimates of AR model parameters. These estimates support a solution of the binary dementia-normal classification of MRI axial brain scans (ADNI and OASIS archives). They also support the AR-RFR process applied to an original microscopic image of a glioblastoma cancer cell. In the face of formidable noise, a sharply defined and robust cancer cell model is estimated, which is an essential tool for cancer - type discrimination exercises and is parametrically plastic enough to serve a wide range of cells.</p>","PeriodicalId":519972,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12136736/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-6641557/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

MRI brain scans alone are not a definitive measure of dementia. Deep-learning algorithms (DLA) and professional human opinion are necessary for diagnosis. Yet, sample sizes are prohibitively large to train a typical DLA, which itself takes considerable computation time to produce diagnostically useful information from contrasting image features. We introduce analytic simplifications to this process to speed it up and reduce data requirements by modeling individual images as solutions of spatially autoregressive (AR) partial difference equations. Image features are the unique individual image AR parameters. Spatially lagged image pixels are explanatory variables for estimating a random-field representation (RFR) of the proposed AR difference equation. RFR model parameters are also those of the image autocorrelation function (ACF). An image pixel matrix-to-vector transformation allows AR parameters to be estimated by ordinary least squares (OLS) regression in millisecond time. Regression degrees of freedom (DOF) -- the number of image pixels -- are unusually large, leading to remarkably precise estimates of AR model parameters. These estimates support a solution of the binary dementia-normal classification of MRI axial brain scans (ADNI and OASIS archives). They also support the AR-RFR process applied to an original microscopic image of a glioblastoma cancer cell. In the face of formidable noise, a sharply defined and robust cancer cell model is estimated, which is an essential tool for cancer - type discrimination exercises and is parametrically plastic enough to serve a wide range of cells.

随机场图像表示加速脑扫描和估计表型胶质母细胞瘤癌细胞模型的二值辨别。
单纯的核磁共振脑部扫描并不能确定是否患有痴呆症。深度学习算法(DLA)和专业的人类意见是诊断所必需的。然而,对于训练一个典型的DLA来说,样本量太大了,它本身需要大量的计算时间来从对比图像特征中产生诊断有用的信息。通过将单个图像建模为空间自回归(AR)偏差分方程的解,我们对这一过程进行了分析简化,以加快速度并减少数据需求。图像特征是唯一的单个图像AR参数。空间滞后图像像素是估计所提出的AR差分方程的随机场表示(RFR)的解释变量。RFR模型参数也是图像自相关函数(ACF)的参数。图像像素矩阵到向量变换允许AR参数在毫秒时间内通过普通最小二乘(OLS)回归估计。回归自由度(DOF)——图像像素的数量——非常大,导致对AR模型参数的非常精确的估计。这些估计支持MRI轴向脑扫描的痴呆-正常二元分类的解决方案(ADNI和OASIS档案)。他们还支持将AR-RFR过程应用于胶质母细胞瘤癌细胞的原始显微图像。面对强大的噪声,我们估计了一个定义清晰且稳健的癌细胞模型,这是癌症类型鉴别练习的重要工具,并且参数化可塑性足以服务于广泛的细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信