System-on-Chip for Flow Cytometry With Impedance Measurement and Integrated Real-Time Size Classification

IF 4.9
Tzu-Hsuan Chou;Siyuan Yu;Calder Wilson;Jacob Dawes;Jaehyeong Park;Louis Marun;Matthew L. Johnston
{"title":"System-on-Chip for Flow Cytometry With Impedance Measurement and Integrated Real-Time Size Classification","authors":"Tzu-Hsuan Chou;Siyuan Yu;Calder Wilson;Jacob Dawes;Jaehyeong Park;Louis Marun;Matthew L. Johnston","doi":"10.1109/TBCAS.2025.3576317","DOIUrl":null,"url":null,"abstract":"This paper presents an impedance measurement system-on-chip (SoC) for flow cytometry (i.e. cell counting) applications. A source-differential, three-electrode sensing scheme is used in a microfluidic flow cell for particle detection. At the front-end, a lock-in amplifier architecture is used, including a high-gain TIA with 60 MHz bandwidth, passive mixers, and low-pass filters. The ac sensor signal is demodulated to extract in-phase (I) and quadrature (Q) baseband components to measure complex impedance. At the back-end, the SoC includes an 8-bit level-crossing ADC (LCADC) for digitizing I/Q signals, followed by real-time digital feature extraction and linear classification for real-time cell size determination. The SoC was fabricated in a 180 nm CMOS process. A measured prototype IC achieves 733 fA/<inline-formula><tex-math>$\\sqrt{Hz}$</tex-math></inline-formula> noise floor and 23 pArms input-referred noise from 1-1 kHz. Combined with a microfluidic flow cell, polymer beads in solution were used as cell surrogates to demonstrate particle counting. Measured results for particle diameters of 10 <inline-formula><tex-math>$\\mu$</tex-math></inline-formula>m, 6 <inline-formula><tex-math>$\\mu$</tex-math></inline-formula>m, 4.5 <inline-formula><tex-math>$\\mu$</tex-math></inline-formula>m and 3 <inline-formula><tex-math>$\\mu$</tex-math></inline-formula>m are shown. Following offline training, the SoC demonstrated on-chip classification of 4.5 <inline-formula><tex-math>$\\mu$</tex-math></inline-formula>m and 6 <inline-formula><tex-math>$\\mu$</tex-math></inline-formula>m beads with a prediction accuracy of 86.16% with pre-recorded data, and 73.6 % while performing real-time inline classification.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"19 4","pages":"712-725"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11023612/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an impedance measurement system-on-chip (SoC) for flow cytometry (i.e. cell counting) applications. A source-differential, three-electrode sensing scheme is used in a microfluidic flow cell for particle detection. At the front-end, a lock-in amplifier architecture is used, including a high-gain TIA with 60 MHz bandwidth, passive mixers, and low-pass filters. The ac sensor signal is demodulated to extract in-phase (I) and quadrature (Q) baseband components to measure complex impedance. At the back-end, the SoC includes an 8-bit level-crossing ADC (LCADC) for digitizing I/Q signals, followed by real-time digital feature extraction and linear classification for real-time cell size determination. The SoC was fabricated in a 180 nm CMOS process. A measured prototype IC achieves 733 fA/$\sqrt{Hz}$ noise floor and 23 pArms input-referred noise from 1-1 kHz. Combined with a microfluidic flow cell, polymer beads in solution were used as cell surrogates to demonstrate particle counting. Measured results for particle diameters of 10 $\mu$m, 6 $\mu$m, 4.5 $\mu$m and 3 $\mu$m are shown. Following offline training, the SoC demonstrated on-chip classification of 4.5 $\mu$m and 6 $\mu$m beads with a prediction accuracy of 86.16% with pre-recorded data, and 73.6 % while performing real-time inline classification.
片上系统流式细胞仪与阻抗测量和集成的实时尺寸分类。
本文介绍了一种用于流式细胞术(即细胞计数)应用的阻抗测量片上系统(SoC)。一种源差分三电极传感方案用于微流体流动电池的颗粒检测。前端采用锁相放大器架构,包括60MHz带宽的高增益TIA、无源混频器和低通滤波器。对交流传感器信号进行解调,提取相和正交基带分量,以测量复杂阻抗。在后端,SoC包括一个8位平交ADC (LCADC),用于数字化I/Q信号,然后进行实时数字特征提取和线性分类,用于实时单元大小确定。该SoC采用180nm CMOS工艺制备。经测量的原型IC在1- 1khz范围内实现733 fA/$\sqrt {Hz}$底噪声和23 pArms输入参考噪声。结合微流体流动池,用溶液中的聚合物珠作为细胞替代品来演示颗粒计数。给出了粒径为10 μm、6 μm、4.5 μm和3 μm时的测量结果。经过离线训练,SoC对4.5 μm和6 μm珠子进行了片上分类,预记录数据的预测准确率为86.16%,实时在线分类的预测准确率为73.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信