Building models, building capacity: A review of participatory machine learning for HIV prevention.

PLOS global public health Pub Date : 2025-06-04 eCollection Date: 2025-01-01 DOI:10.1371/journal.pgph.0003862
Mark Sendak, Meg Young, Jee Young Kim, Alifia Hasan, Clare Kelsey, Catherine O'Neal, Tonya Jagneaux, Wayne Wilbright, John Couk, Stephen Lim, Tamachia Davenport, Shirley Lolis, Jennifer Thomas, Shannon Widman, Suresh Balu, Meredith Clement, Lance Okeke
{"title":"Building models, building capacity: A review of participatory machine learning for HIV prevention.","authors":"Mark Sendak, Meg Young, Jee Young Kim, Alifia Hasan, Clare Kelsey, Catherine O'Neal, Tonya Jagneaux, Wayne Wilbright, John Couk, Stephen Lim, Tamachia Davenport, Shirley Lolis, Jennifer Thomas, Shannon Widman, Suresh Balu, Meredith Clement, Lance Okeke","doi":"10.1371/journal.pgph.0003862","DOIUrl":null,"url":null,"abstract":"<p><p>A growing number of researchers and practitioners are embracing a \"participatory turn\" in machine learning (ML) to improve model development, prevent harm, and provide communities more influence over systems that impact them. In this paper, we explore the intersection of participatory practices in healthcare and the emerging focus on responsible AI with a focus on human immunodeficiency virus (HIV) care. We review the historical context of participation in HIV treatment and prevention, emphasizing how patient activism has shaped practices in this field. We then review participatory ML in HIV prevention and present a brief case study of a project designed to identify candidates for pre-exposure prophylaxis (PrEP) in Louisiana. The review highlights the essential steps in conducting participatory ML. Finally, we draw lessons for future participatory ML projects, underscoring the importance of long-term collaboration, responsiveness to partner feedback, and the crucial role of capacity-building for individuals and organizations. Effective participation requires substantial resources and investment, which supports overall project goals beyond mere improvements in model performance. We also draw lessons for advancing the participatory ML field, including (1) the impact of funding mandates on fostering effective engagement; (2) the need to scale participatory processes rather than just technologies; and (3) the need for genuine participation to allow flexibility in project plans, timelines, and shifts in institutional power dynamics.</p>","PeriodicalId":74466,"journal":{"name":"PLOS global public health","volume":"5 6","pages":"e0003862"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS global public health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pgph.0003862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A growing number of researchers and practitioners are embracing a "participatory turn" in machine learning (ML) to improve model development, prevent harm, and provide communities more influence over systems that impact them. In this paper, we explore the intersection of participatory practices in healthcare and the emerging focus on responsible AI with a focus on human immunodeficiency virus (HIV) care. We review the historical context of participation in HIV treatment and prevention, emphasizing how patient activism has shaped practices in this field. We then review participatory ML in HIV prevention and present a brief case study of a project designed to identify candidates for pre-exposure prophylaxis (PrEP) in Louisiana. The review highlights the essential steps in conducting participatory ML. Finally, we draw lessons for future participatory ML projects, underscoring the importance of long-term collaboration, responsiveness to partner feedback, and the crucial role of capacity-building for individuals and organizations. Effective participation requires substantial resources and investment, which supports overall project goals beyond mere improvements in model performance. We also draw lessons for advancing the participatory ML field, including (1) the impact of funding mandates on fostering effective engagement; (2) the need to scale participatory processes rather than just technologies; and (3) the need for genuine participation to allow flexibility in project plans, timelines, and shifts in institutional power dynamics.

构建模型,构建能力:艾滋病预防参与式机器学习综述。
越来越多的研究人员和实践者正在接受机器学习(ML)的“参与式转向”,以改进模型开发,防止伤害,并为社区提供对影响他们的系统的更大影响力。在本文中,我们探讨了医疗保健中的参与式实践与新兴的关注负责任的人工智能的交集,重点是人类免疫缺陷病毒(HIV)护理。我们回顾了参与艾滋病毒治疗和预防的历史背景,强调患者行动主义如何塑造了这一领域的实践。然后,我们回顾了参与式ML在艾滋病毒预防中的应用,并介绍了一个项目的简要案例研究,该项目旨在确定路易斯安那州暴露前预防(PrEP)的候选人。回顾强调了开展参与式机器学习的基本步骤。最后,我们为未来的参与式机器学习项目总结了经验教训,强调了长期合作的重要性、对合作伙伴反馈的响应以及个人和组织能力建设的关键作用。有效的参与需要大量的资源和投资,这些资源和投资支持整个项目目标,而不仅仅是模型性能的改进。我们还总结了推进参与式机器学习领域的经验教训,包括:(1)资助任务对促进有效参与的影响;(2)需要扩大参与过程,而不仅仅是技术;(3)需要真正的参与,以允许项目计划、时间表和机构权力动态变化的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信