Pisces: A multi-modal data augmentation approach for drug combination synergy prediction.

IF 11.1 Q1 CELL BIOLOGY
Hanwen Xu, Jiacheng Lin, Addie Woicik, Zixuan Liu, Jianzhu Ma, Sheng Zhang, Hoifung Poon, Liewei Wang, Sheng Wang
{"title":"Pisces: A multi-modal data augmentation approach for drug combination synergy prediction.","authors":"Hanwen Xu, Jiacheng Lin, Addie Woicik, Zixuan Liu, Jianzhu Ma, Sheng Zhang, Hoifung Poon, Liewei Wang, Sheng Wang","doi":"10.1016/j.xgen.2025.100892","DOIUrl":null,"url":null,"abstract":"<p><p>Drug combination therapy is promising for cancer treatment by reducing resistance and improving efficacy. Machine learning approaches to predicting drug combinations require massive training data. Here, we propose Pisces, a novel machine learning approach for drug combination synergy prediction. The key idea is to augment the sparse dataset by creating multiple views for each drug combination based on different modalities. We combined eight modalities of a drug to create 64 augmented views. By treating each augmented view as a separate instance, Pisces can process any number of drug modalities, circumventing the issue of missing modality. Pisces obtained state-of-the-art results on cell-line-based and xenograft-based drug synergy predictions and drug-drug interaction prediction. By interpreting Pisces's predictions using a genetic interaction network, we identified a breast cancer drug-sensitive pathway from BRCA cell lines. Collectively, the results show that Pisces effectively predicts drug synergy and drug-drug interactions through data augmentation and can be applied to various biological applications.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100892"},"PeriodicalIF":11.1000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Drug combination therapy is promising for cancer treatment by reducing resistance and improving efficacy. Machine learning approaches to predicting drug combinations require massive training data. Here, we propose Pisces, a novel machine learning approach for drug combination synergy prediction. The key idea is to augment the sparse dataset by creating multiple views for each drug combination based on different modalities. We combined eight modalities of a drug to create 64 augmented views. By treating each augmented view as a separate instance, Pisces can process any number of drug modalities, circumventing the issue of missing modality. Pisces obtained state-of-the-art results on cell-line-based and xenograft-based drug synergy predictions and drug-drug interaction prediction. By interpreting Pisces's predictions using a genetic interaction network, we identified a breast cancer drug-sensitive pathway from BRCA cell lines. Collectively, the results show that Pisces effectively predicts drug synergy and drug-drug interactions through data augmentation and can be applied to various biological applications.

双鱼座:药物联合协同作用预测的多模态数据增强方法。
药物联合治疗通过减少耐药性和提高疗效,有望治疗癌症。预测药物组合的机器学习方法需要大量的训练数据。在这里,我们提出了双鱼座,一种新的机器学习方法,用于药物联合协同作用预测。关键思想是通过基于不同模态为每种药物组合创建多个视图来增强稀疏数据集。我们将一种药物的八种模式结合起来,创造了64种增强视图。通过将每个增强视图视为一个单独的实例,双鱼座可以处理任意数量的药物模式,避免了模式缺失的问题。双鱼座在基于细胞系和异种移植物的药物协同作用预测和药物-药物相互作用预测方面获得了最先进的结果。通过使用遗传相互作用网络解释双鱼座的预测,我们从BRCA细胞系中确定了乳腺癌药物敏感途径。总的来说,结果表明双鱼座通过数据增强有效地预测药物协同作用和药物-药物相互作用,并可应用于各种生物学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信