Predicting Post-ICU Functional Impairment During Early ICU Admission Using Real-world Electronic Health Record Data.

IF 1.7 4区 医学 Q2 NURSING
Anna Krupp, You Wang, Chao Wang, Nicholas M Mohr, Laura Frey-Law, Barbara Rakel
{"title":"Predicting Post-ICU Functional Impairment During Early ICU Admission Using Real-world Electronic Health Record Data.","authors":"Anna Krupp, You Wang, Chao Wang, Nicholas M Mohr, Laura Frey-Law, Barbara Rakel","doi":"10.1177/10547738251342845","DOIUrl":null,"url":null,"abstract":"<p><p>Intensive care unit (ICU) survivors increasingly report new or worsening functional impairment at hospital discharge. Early risk identification models that include high-dimensional nursing data may improve the delivery of preventive interventions. This study aims to develop and validate models predicting functional impairment at hospital discharge (Activity Measure for Post Acute Care [AMPAC] score <18) using electronic health record (EHR) data from the first 48 h of ICU admission. We identified 799 sepsis survivors hospitalized in the ICU (April 2016-May 2020) from a Midwestern health system's data warehouse. We extracted demographics, illness severity, nursing assessments, and ICU interventions. Given the limited availability of real-world EHR data, we employed CTAB-GAN, a generative adversarial network, to synthesize training data, enabling more robust model development. After feature engineering, 53 of 99 features were selected. We trained an eXtreme Gradient Boosting (XGBoost) classification model and used SHapley Additive exPlanations (SHAP) analysis to identify key predictors. Model performance was evaluated using the area under the receiver operating characteristic curves (AUC). For the 24-h model, the most critical features were first documented AMPAC score, age, mobility level, Braden Scale score, and walking device, while the 48-h model added body mass index and sequential organ failure assessment (SOFA) score as key predictors. Leveraging these findings, lightweight models were constructed using only the most important (top 5/10) predictors, which achieved results comparable to the full predictor model, with AUCs of 0.83 (24 h) and 0.83 (48 h), respectively. Our model, which includes patient characteristics and nurse assessments, can identify patients during early ICU admission who are at high risk for functional impairment at hospital discharge. Our streamlined modeling approach highlights the potential for integration into EHR systems, providing a practical and efficient tool for clinical decision support while maintaining predictive accuracy.</p>","PeriodicalId":50677,"journal":{"name":"Clinical Nursing Research","volume":" ","pages":"10547738251342845"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Nursing Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10547738251342845","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NURSING","Score":null,"Total":0}
引用次数: 0

Abstract

Intensive care unit (ICU) survivors increasingly report new or worsening functional impairment at hospital discharge. Early risk identification models that include high-dimensional nursing data may improve the delivery of preventive interventions. This study aims to develop and validate models predicting functional impairment at hospital discharge (Activity Measure for Post Acute Care [AMPAC] score <18) using electronic health record (EHR) data from the first 48 h of ICU admission. We identified 799 sepsis survivors hospitalized in the ICU (April 2016-May 2020) from a Midwestern health system's data warehouse. We extracted demographics, illness severity, nursing assessments, and ICU interventions. Given the limited availability of real-world EHR data, we employed CTAB-GAN, a generative adversarial network, to synthesize training data, enabling more robust model development. After feature engineering, 53 of 99 features were selected. We trained an eXtreme Gradient Boosting (XGBoost) classification model and used SHapley Additive exPlanations (SHAP) analysis to identify key predictors. Model performance was evaluated using the area under the receiver operating characteristic curves (AUC). For the 24-h model, the most critical features were first documented AMPAC score, age, mobility level, Braden Scale score, and walking device, while the 48-h model added body mass index and sequential organ failure assessment (SOFA) score as key predictors. Leveraging these findings, lightweight models were constructed using only the most important (top 5/10) predictors, which achieved results comparable to the full predictor model, with AUCs of 0.83 (24 h) and 0.83 (48 h), respectively. Our model, which includes patient characteristics and nurse assessments, can identify patients during early ICU admission who are at high risk for functional impairment at hospital discharge. Our streamlined modeling approach highlights the potential for integration into EHR systems, providing a practical and efficient tool for clinical decision support while maintaining predictive accuracy.

利用真实世界电子健康记录数据预测ICU早期入院患者的功能损伤。
重症监护病房(ICU)幸存者越来越多地报告出院时新的或恶化的功能损伤。包含高维护理数据的早期风险识别模型可以改善预防性干预措施的提供。本研究旨在建立并验证预测出院时功能损害的模型(急性护理后活动测量[AMPAC]评分)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
107
审稿时长
>12 weeks
期刊介绍: Clinical Nursing Research (CNR) is a peer-reviewed quarterly journal that addresses issues of clinical research that are meaningful to practicing nurses, providing an international forum to encourage discussion among clinical practitioners, enhance clinical practice by pinpointing potential clinical applications of the latest scholarly research, and disseminate research findings of particular interest to practicing nurses. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信