Deep learning-based temporal MR image reconstruction for accelerated interventional imaging during in-bore biopsies.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2025-05-01 Epub Date: 2025-06-03 DOI:10.1117/1.JMI.12.3.035001
Constant R Noordman, Steffan J W Borgers, Martijn F Boomsma, Thomas C Kwee, Marloes M G van der Lees, Christiaan G Overduin, Maarten de Rooij, Derya Yakar, Jurgen J Fütterer, Henkjan J Huisman
{"title":"Deep learning-based temporal MR image reconstruction for accelerated interventional imaging during in-bore biopsies.","authors":"Constant R Noordman, Steffan J W Borgers, Martijn F Boomsma, Thomas C Kwee, Marloes M G van der Lees, Christiaan G Overduin, Maarten de Rooij, Derya Yakar, Jurgen J Fütterer, Henkjan J Huisman","doi":"10.1117/1.JMI.12.3.035001","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Interventional MR imaging struggles with speed and efficiency. We aim to accelerate transrectal in-bore MR-guided biopsies for prostate cancer through undersampled image reconstruction and instrument localization by image segmentation.</p><p><strong>Approach: </strong>In this single-center retrospective study, we used 8464 MR 2D multislice scans from 1289 patients undergoing a prostate biopsy to train and test a deep learning-based spatiotemporal MR image reconstruction model and a nnU-Net segmentation model. The dataset was synthetically undersampled using various undersampling rates ( <math><mrow><mi>R</mi> <mo>=</mo> <mn>8</mn></mrow> </math> , 16, 25, 32). An annotated, unseen subset of these data was used to compare our model with a nontemporal model and readers in a reader study involving seven radiologists from three centers based in the Netherlands. We assessed a maximum noninferior undersampling rate using instrument prediction success rate and instrument tip position (ITP) error.</p><p><strong>Results: </strong>The maximum noninferior undersampling rate is 16-times for the temporal model (ITP error: 2.28 mm, 95% CI: 1.68 to 3.31, mean difference from reference standard: 0.63 mm, <math><mrow><mi>P</mi> <mo>=</mo> <mo>.</mo> <mn>09</mn></mrow> </math> ), whereas a nontemporal model could not produce noninferior image reconstructions comparable to our reference standard. Furthermore, the nontemporal model (ITP error: 6.27 mm, 95% CI: 3.90 to 9.07) and readers (ITP error: 6.87 mm, 95% CI: 6.38 to 7.40) had low instrument prediction success rates (46% and 60%, respectively) compared with the temporal model's 95%.</p><p><strong>Conclusion: </strong>Deep learning-based spatiotemporal MR image reconstruction can improve time-critical intervention tasks such as instrument tracking. We found 16 times undersampling as the maximum noninferior acceleration where image quality is preserved, ITP error is minimized, and the instrument prediction success rate is maximized.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 3","pages":"035001"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12131189/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.3.035001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Interventional MR imaging struggles with speed and efficiency. We aim to accelerate transrectal in-bore MR-guided biopsies for prostate cancer through undersampled image reconstruction and instrument localization by image segmentation.

Approach: In this single-center retrospective study, we used 8464 MR 2D multislice scans from 1289 patients undergoing a prostate biopsy to train and test a deep learning-based spatiotemporal MR image reconstruction model and a nnU-Net segmentation model. The dataset was synthetically undersampled using various undersampling rates ( R = 8 , 16, 25, 32). An annotated, unseen subset of these data was used to compare our model with a nontemporal model and readers in a reader study involving seven radiologists from three centers based in the Netherlands. We assessed a maximum noninferior undersampling rate using instrument prediction success rate and instrument tip position (ITP) error.

Results: The maximum noninferior undersampling rate is 16-times for the temporal model (ITP error: 2.28 mm, 95% CI: 1.68 to 3.31, mean difference from reference standard: 0.63 mm, P = . 09 ), whereas a nontemporal model could not produce noninferior image reconstructions comparable to our reference standard. Furthermore, the nontemporal model (ITP error: 6.27 mm, 95% CI: 3.90 to 9.07) and readers (ITP error: 6.87 mm, 95% CI: 6.38 to 7.40) had low instrument prediction success rates (46% and 60%, respectively) compared with the temporal model's 95%.

Conclusion: Deep learning-based spatiotemporal MR image reconstruction can improve time-critical intervention tasks such as instrument tracking. We found 16 times undersampling as the maximum noninferior acceleration where image quality is preserved, ITP error is minimized, and the instrument prediction success rate is maximized.

基于深度学习的颞叶磁共振图像重建,用于管内活检期间加速介入成像。
目的:介入磁共振成像的速度和效率。我们的目标是通过采样不足的图像重建和图像分割的仪器定位来加速经直肠前列腺癌的磁共振引导活检。方法:在这项单中心回顾性研究中,我们使用了1289例前列腺活检患者的8464张磁共振二维多层扫描图来训练和测试基于深度学习的时空磁共振图像重建模型和nnU-Net分割模型。使用不同的欠采样率(R = 8,16,25,32)对数据集进行综合欠采样。在一项涉及来自荷兰三个中心的七名放射科医生的读者研究中,使用这些数据的一个注释的、未见过的子集将我们的模型与非时间模型和读者进行比较。我们使用仪器预测成功率和仪器尖端位置(ITP)误差来评估最大非劣欠采样率。结果:时间模型的最大非劣欠采样率为16次(ITP误差:2.28 mm, 95% CI: 1.68 ~ 3.31,与参考标准的平均差值:0.63 mm, P =。09),而非时间模型无法产生与我们的参考标准相当的非劣质图像重建。此外,与时间模型的95%相比,非时间模型(ITP误差:6.27 mm, 95% CI: 3.90至9.07)和读取器(ITP误差:6.87 mm, 95% CI: 6.38至7.40)的仪器预测成功率较低(分别为46%和60%)。结论:基于深度学习的时空磁共振图像重建可以改善仪器跟踪等时间关键型干预任务。我们发现16次欠采样作为最大非劣等加速,在此条件下,图像质量得以保留,ITP误差最小化,仪器预测成功率最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信