{"title":"Structural and Functional Diversity of Glutamate Receptors-Like Channels in Plants.","authors":"Bisma Riaz, Yanli Zhang, Adeel Riaz, Wei Jiang, Hafiza Sadia, Yuan Qin, Guang Chen, Zhong-Hua Chen, Fenglin Deng, Fanrong Zeng","doi":"10.1111/ppl.70313","DOIUrl":null,"url":null,"abstract":"<p><p>Glutamate receptor-like (GLR) family encodes cation-permeable ion channels that are crucial for defense signaling and have attracted significant research interest. The identification of multiple GLRs subfamilies across vascular lineages suggests their functional diversity in plants. Functional studies of clade 3 GLRs confirm their critical role in generating electrical signals and increasing cytosolic Ca<sup>2+</sup> in response to mechanical wounding, insect and pathogen attacks, and other environmental cues for systemic defense responses. In this review, we present evidence that GLRs are conserved across all plant lineages and likely originated from Streptophyta. Comparative bioinformatic analysis of GLRs' functional domains reveals that ion channel gating and ligand binding of GLR are highly conserved and involved in ion transport and cell-to-cell communication in plants. The role of GLRs in electrical and Ca<sup>2+</sup> signaling is also discussed in non-vascular tissues as well as in vascular plants. The hypothetical model suggests that GLR-induced systemic defense responses to external stimuli may have co-evolved with plant vascular systems. We also highlight the role of glutamate and other amino acid agonists in regulating membrane depolarization and cytosolic Ca<sup>2+</sup> concentration. Finally, we review the roles of GLR in physiological processes, abiotic and biotic stresses, and strategies to enhance plant health and productivity.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 3","pages":"e70313"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70313","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Glutamate receptor-like (GLR) family encodes cation-permeable ion channels that are crucial for defense signaling and have attracted significant research interest. The identification of multiple GLRs subfamilies across vascular lineages suggests their functional diversity in plants. Functional studies of clade 3 GLRs confirm their critical role in generating electrical signals and increasing cytosolic Ca2+ in response to mechanical wounding, insect and pathogen attacks, and other environmental cues for systemic defense responses. In this review, we present evidence that GLRs are conserved across all plant lineages and likely originated from Streptophyta. Comparative bioinformatic analysis of GLRs' functional domains reveals that ion channel gating and ligand binding of GLR are highly conserved and involved in ion transport and cell-to-cell communication in plants. The role of GLRs in electrical and Ca2+ signaling is also discussed in non-vascular tissues as well as in vascular plants. The hypothetical model suggests that GLR-induced systemic defense responses to external stimuli may have co-evolved with plant vascular systems. We also highlight the role of glutamate and other amino acid agonists in regulating membrane depolarization and cytosolic Ca2+ concentration. Finally, we review the roles of GLR in physiological processes, abiotic and biotic stresses, and strategies to enhance plant health and productivity.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.