Retrieving the spatial layout of medium-scale geographical maps through distributional semantics.

IF 2 3区 心理学 Q3 BEHAVIORAL SCIENCES
Giorgia Anceresi, Daniele Gatti, Tomaso Vecchi, Marco Marelli, Luca Rinaldi
{"title":"Retrieving the spatial layout of medium-scale geographical maps through distributional semantics.","authors":"Giorgia Anceresi, Daniele Gatti, Tomaso Vecchi, Marco Marelli, Luca Rinaldi","doi":"10.1016/j.neuropsychologia.2025.109190","DOIUrl":null,"url":null,"abstract":"<p><p>Recent evidence has indicated that spatial representations, such as large-scale geographical maps, can be retrieved from natural language alone through cognitively plausible distributional-semantic models, which capture word meanings through contextual relationship (i.e., non-spatial associative-learning mechanisms) in large linguistic corpora. Here, we demonstrate that spatial information can be extracted from purely linguistic data even at the medium-scale level (e.g., landmarks within a city). Our results indeed show that different spatial representations (i.e., with information encoded either in terms of relative spatial distances or absolute locations defined by coordinate axes) of the underground maps of five European cities can be retrieved from natural language. Furthermore, by selectively focusing on the London tube, we show that linguistic data align effectively with both geographical and schematic visual maps. These findings contribute to a growing body of research that challenges the traditional view of cognitive maps as primarily relying on specialized spatial computations and highlight the importance of non-spatial associative-learning mechanisms within the linguistic environment in the setting of spatial representations.</p>","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":" ","pages":"109190"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychologia","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.neuropsychologia.2025.109190","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Recent evidence has indicated that spatial representations, such as large-scale geographical maps, can be retrieved from natural language alone through cognitively plausible distributional-semantic models, which capture word meanings through contextual relationship (i.e., non-spatial associative-learning mechanisms) in large linguistic corpora. Here, we demonstrate that spatial information can be extracted from purely linguistic data even at the medium-scale level (e.g., landmarks within a city). Our results indeed show that different spatial representations (i.e., with information encoded either in terms of relative spatial distances or absolute locations defined by coordinate axes) of the underground maps of five European cities can be retrieved from natural language. Furthermore, by selectively focusing on the London tube, we show that linguistic data align effectively with both geographical and schematic visual maps. These findings contribute to a growing body of research that challenges the traditional view of cognitive maps as primarily relying on specialized spatial computations and highlight the importance of non-spatial associative-learning mechanisms within the linguistic environment in the setting of spatial representations.

基于分布语义的中比例尺地形图空间布局检索。
最近的证据表明,空间表征,如大规模的地理地图,可以通过认知上合理的分布语义模型从自然语言中检索出来,该模型通过上下文关系(即非空间联想学习机制)在大型语言语料库中捕获词义。在这里,我们证明了空间信息可以从纯粹的语言数据中提取,甚至在中等尺度水平(例如,城市内的地标)。我们的研究结果确实表明,从自然语言中可以检索到五个欧洲城市地下地图的不同空间表示(即,以相对空间距离或由坐标轴定义的绝对位置编码的信息)。此外,通过选择性地关注伦敦地铁,我们表明语言数据与地理和示意图视觉地图有效地对齐。这些发现促进了越来越多的研究,这些研究挑战了认知地图主要依赖于专门的空间计算的传统观点,并强调了在空间表征的语言环境中非空间联想学习机制的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuropsychologia
Neuropsychologia 医学-行为科学
CiteScore
5.10
自引率
3.80%
发文量
228
审稿时长
4 months
期刊介绍: Neuropsychologia is an international interdisciplinary journal devoted to experimental and theoretical contributions that advance understanding of human cognition and behavior from a neuroscience perspective. The journal will consider for publication studies that link brain function with cognitive processes, including attention and awareness, action and motor control, executive functions and cognitive control, memory, language, and emotion and social cognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信