{"title":"Marked Genome Reduction Driven by a Parasitic Lifestyle: Two Complete Genomes of Endosymbiotic Bacteria Possibly Hosted by a Dinoflagellate.","authors":"Takuro Nakayama, Ryo Harada, Akinori Yabuki, Mami Nomura, Kogiku Shiba, Kazuo Inaba, Yuji Inagaki","doi":"10.1264/jsme2.ME25005","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria with endosymbiotic lifestyles often show marked genome reduction. While the shrinkage of genomes in intracellular symbionts of animals, including parasitic bacteria, has been extensively exami-ned, less is known about symbiotic bacteria associated with single-celled eukaryotes. We herein report the genomes of two novel gammaproteobacterial lineages, RS3 and XS4, identified as putative parasitic endosymbionts of the dinoflagellate Citharistes regius. Phylogenetic ana-lyses suggest that RS3 and XS4 belong to the family Fastidiosibacteraceae within the order Beggiatoales, forming independent lineages therein. The genomes of RS3 and XS4 are 529 and 436 kbp in size, respectively, revealing marked reductions from related bacterial genomes. XS4, which has a very reduced genome with a low GC content, uses a different genetic code, in which UGA assigned tryptophan. The small genomes of RS3 and XS4 encode a limited number of proteins, retaining only approximately 20% of the predicted ancestral proteome. Metabolic reconstruction suggests that RS3 and XS4 are parasitic symbionts that are heavily dependent on their host for essential metabolites. Furthermore, we found that the ancestor of both genomes likely acquired an ADP:ATP antiporter gene via horizontal gene transfer, an event that may have enabled their evolution as energy parasites by facilitating the acquisition of ATP from their host. These results on novel bacteria with highly reduced genomes expand our understanding of the phylogenetic and genomic diversities of endosymbiotic bacteria in protists.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"40 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12213064/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Environments","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1264/jsme2.ME25005","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteria with endosymbiotic lifestyles often show marked genome reduction. While the shrinkage of genomes in intracellular symbionts of animals, including parasitic bacteria, has been extensively exami-ned, less is known about symbiotic bacteria associated with single-celled eukaryotes. We herein report the genomes of two novel gammaproteobacterial lineages, RS3 and XS4, identified as putative parasitic endosymbionts of the dinoflagellate Citharistes regius. Phylogenetic ana-lyses suggest that RS3 and XS4 belong to the family Fastidiosibacteraceae within the order Beggiatoales, forming independent lineages therein. The genomes of RS3 and XS4 are 529 and 436 kbp in size, respectively, revealing marked reductions from related bacterial genomes. XS4, which has a very reduced genome with a low GC content, uses a different genetic code, in which UGA assigned tryptophan. The small genomes of RS3 and XS4 encode a limited number of proteins, retaining only approximately 20% of the predicted ancestral proteome. Metabolic reconstruction suggests that RS3 and XS4 are parasitic symbionts that are heavily dependent on their host for essential metabolites. Furthermore, we found that the ancestor of both genomes likely acquired an ADP:ATP antiporter gene via horizontal gene transfer, an event that may have enabled their evolution as energy parasites by facilitating the acquisition of ATP from their host. These results on novel bacteria with highly reduced genomes expand our understanding of the phylogenetic and genomic diversities of endosymbiotic bacteria in protists.
期刊介绍:
Microbial ecology in natural and engineered environments; Microbial degradation of xenobiotic compounds; Microbial processes in biogeochemical cycles; Microbial interactions and signaling with animals and plants; Interactions among microorganisms; Microorganisms related to public health; Phylogenetic and functional diversity of microbial communities; Genomics, metagenomics, and bioinformatics for microbiology; Application of microorganisms to agriculture, fishery, and industry; Molecular biology and biochemistry related to environmental microbiology; Methodology in general and environmental microbiology; Interdisciplinary research areas for microbial ecology (e.g., Astrobiology, and Origins of Life); Taxonomic description of novel microorganisms with ecological perspective; Physiology and metabolisms of microorganisms; Evolution of genes and microorganisms; Genome report of microorganisms with ecological perspective.