Ruinan Qi, Hao Li, Hongrui Jiang, Yue Su, Xiqian Guo, Fanchi Li, Minjin Han, Bing Li, Haina Sun
{"title":"Evaluation of the toxic effects and midgut biological changes induced by low concentrations of cyantraniliprole in Bombyx mori.","authors":"Ruinan Qi, Hao Li, Hongrui Jiang, Yue Su, Xiqian Guo, Fanchi Li, Minjin Han, Bing Li, Haina Sun","doi":"10.1111/imb.13006","DOIUrl":null,"url":null,"abstract":"<p><p>Cyantraniliprole (Cya), a diamide insecticide, is widely utilised for the management of Lepidoptera pests owing to its potent insecticidal efficacy and broad spectrum of activity. The extensive use and prolonged environmental persistence of this insecticide pose a significant threat to the sustainable development of sericulture. This study firstly assessed the lethal toxicity of cyantraniliprole to the 5th instar larvae of Bombyx mori. Exposure to cyantraniliprole (LC<sub>5</sub>, LC<sub>10</sub> and LC<sub>20</sub>) resulted in a concentration-dependent reduction in larval weight, pupal weight and survival rate and a prolongation of larval development time. Moreover, cyantraniliprole LC<sub>10</sub> resulted in substantial structural damage to the epithelial cells, suppressed the mRNA levels of oxidative phosphorylation genes, perturbed ATP synthesis and led to an imbalance of intracellular reactive oxygen species. Meanwhile, the starvation treatment suggested that the impacts of cyantraniliprole on silkworms cannot be solely ascribed to nutritional deficiencies. Additionally, the results revealed that cytochrome P450s might serve as a pivotal factor in the detoxification metabolism of cyantraniliprole in the midgut of silkworms. The findings of this study offer evidence for the ecological risk posed by environmental residues of cyantraniliprole to non-target organisms and are also of great significance for sericulture production.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.13006","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyantraniliprole (Cya), a diamide insecticide, is widely utilised for the management of Lepidoptera pests owing to its potent insecticidal efficacy and broad spectrum of activity. The extensive use and prolonged environmental persistence of this insecticide pose a significant threat to the sustainable development of sericulture. This study firstly assessed the lethal toxicity of cyantraniliprole to the 5th instar larvae of Bombyx mori. Exposure to cyantraniliprole (LC5, LC10 and LC20) resulted in a concentration-dependent reduction in larval weight, pupal weight and survival rate and a prolongation of larval development time. Moreover, cyantraniliprole LC10 resulted in substantial structural damage to the epithelial cells, suppressed the mRNA levels of oxidative phosphorylation genes, perturbed ATP synthesis and led to an imbalance of intracellular reactive oxygen species. Meanwhile, the starvation treatment suggested that the impacts of cyantraniliprole on silkworms cannot be solely ascribed to nutritional deficiencies. Additionally, the results revealed that cytochrome P450s might serve as a pivotal factor in the detoxification metabolism of cyantraniliprole in the midgut of silkworms. The findings of this study offer evidence for the ecological risk posed by environmental residues of cyantraniliprole to non-target organisms and are also of great significance for sericulture production.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).