Hexapod robot motion planning investigation under the influence of multi-dimensional terrain features.

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Neurorobotics Pub Date : 2025-05-21 eCollection Date: 2025-01-01 DOI:10.3389/fnbot.2025.1605938
Chen Chen, Junbo Lin, Bo You, Jiayu Li, Biao Gao
{"title":"Hexapod robot motion planning investigation under the influence of multi-dimensional terrain features.","authors":"Chen Chen, Junbo Lin, Bo You, Jiayu Li, Biao Gao","doi":"10.3389/fnbot.2025.1605938","DOIUrl":null,"url":null,"abstract":"<p><p>To address the challenges arising from the coupled interactions between multi-dimensional terrain features-encompassing both geometric and physical properties of complex field environments-and the locomotion stability of hexapod robots, this paper presents a comprehensive motion planning framework incorporating multi-dimensional terrain information. The proposed methodology systematically extracts multi-dimensional geometric and physical terrain features from a multi-layered environmental map. Based on these features, a traversal cost map is synthesized, and an enhanced A* algorithm is developed that incorporates terrain traversal metrics to optimize path planning safety across complex field environments. Furthermore, the framework introduces a foothold cost map derived from multi-dimensional terrain data, coupled with a fault-tolerant free gait planning algorithm based on foothold cost evaluation. This approach enables dynamic gait modulation to enhance overall locomotion stability while maintaining safe trajectory planning. The efficacy of the proposed framework is validated through both simulation studies and physical experiments on a hexapod robotic platform. Experimental results demonstrate that, compared to conventional hexapod motion planning approaches, the proposed multi-dimensional terrain-aware planning framework significantly enhances both locomotion safety and stability across complex field environments.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"19 ","pages":"1605938"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133957/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2025.1605938","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To address the challenges arising from the coupled interactions between multi-dimensional terrain features-encompassing both geometric and physical properties of complex field environments-and the locomotion stability of hexapod robots, this paper presents a comprehensive motion planning framework incorporating multi-dimensional terrain information. The proposed methodology systematically extracts multi-dimensional geometric and physical terrain features from a multi-layered environmental map. Based on these features, a traversal cost map is synthesized, and an enhanced A* algorithm is developed that incorporates terrain traversal metrics to optimize path planning safety across complex field environments. Furthermore, the framework introduces a foothold cost map derived from multi-dimensional terrain data, coupled with a fault-tolerant free gait planning algorithm based on foothold cost evaluation. This approach enables dynamic gait modulation to enhance overall locomotion stability while maintaining safe trajectory planning. The efficacy of the proposed framework is validated through both simulation studies and physical experiments on a hexapod robotic platform. Experimental results demonstrate that, compared to conventional hexapod motion planning approaches, the proposed multi-dimensional terrain-aware planning framework significantly enhances both locomotion safety and stability across complex field environments.

多维地形特征影响下的六足机器人运动规划研究。
为了解决复杂野外环境中包含几何和物理特性的多维地形特征与六足机器人运动稳定性之间的耦合相互作用所带来的挑战,本文提出了一个包含多维地形信息的综合运动规划框架。该方法系统地从多层环境地图中提取多维几何和物理地形特征。基于这些特征,合成了一个遍历成本图,并开发了一个增强的a *算法,该算法包含地形遍历指标,以优化复杂野外环境中的路径规划安全性。此外,该框架引入了基于多维地形数据的立足点成本图,并结合基于立足点成本评估的容错无步态规划算法。这种方法使动态步态调节能够在保持安全轨迹规划的同时增强整体运动稳定性。在六足机器人平台上进行了仿真研究和物理实验,验证了该框架的有效性。实验结果表明,与传统的六足机器人运动规划方法相比,所提出的多维地形感知规划框架显著提高了机器人在复杂野外环境中的运动安全性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信