Miranda Hernández-Falcó, Paula Sáez-Espinosa, Andrea López-Botella, Laura Robles-Gómez, Francisco Alberto García-Vázquez, Maria José Izquierdo-Rico, Pedro José Llamas-López, María José Gómez-Torres
{"title":"Immunolocalization and proteomic analyses of IZUMO1 in porcine spermatozoa.","authors":"Miranda Hernández-Falcó, Paula Sáez-Espinosa, Andrea López-Botella, Laura Robles-Gómez, Francisco Alberto García-Vázquez, Maria José Izquierdo-Rico, Pedro José Llamas-López, María José Gómez-Torres","doi":"10.3389/fcell.2025.1576881","DOIUrl":null,"url":null,"abstract":"<p><p>Reproduction is fundamental to breeding programs aimed at increasing productivity in swine industry. However, the application of <i>in vitro</i> embryo production in this species is limited because of the polyspermy. Therefore, characterizing proteins involved in sperm-oocyte binding such as IZUMO1 becomes essential. This study aimed to characterize porcine IZUMO1 protein under three different physiological states: sperm-rich fraction (SRF), 1-h capacitated sperm selected by <i>swim-up</i> (CS), and induced acrosome reaction in 1-h capacitated sperm (ARS). The immunolocalization of IZUMO1 and acrosome status of fifteen fertile boars was assessed by confocal microscopy. Additionally, six males were subjected to a more detailed examination via quantitative proteomic analysis by LC-MS/MS. Fluorescence results revealed four distinct IZUMO1 distribution patterns: pattern 1 (P1) characterized by speckled staining in the pre-equatorial subdomain and postacrosomal domain, pattern 2 (P2) displaying strong apical ridge staining with speckled staining in the pre-equatorial subdomain and postacrosomal domain, pattern 3 (P3) exhibiting speckled staining in the postacrosomal domain, and pattern 4 (P4) without labelling. In the SRF sperm, IZUMO1 was predominantly distributed between staining patterns P1 and P2 (∼50%). As a result of the capacitation, there was a significant decrease in P1. Conversely, in ARS, IZUMO1 was dominantly distributed in P3 51.55% and P4 24.25%. The quantitative study of the IZUMO1 protein supported these findings. With those results and compared with our previous work in human, here we propose a working model of IZUMO1 migration dependent on the morphology and subdomains of the sperm head.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1576881"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12134388/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1576881","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Reproduction is fundamental to breeding programs aimed at increasing productivity in swine industry. However, the application of in vitro embryo production in this species is limited because of the polyspermy. Therefore, characterizing proteins involved in sperm-oocyte binding such as IZUMO1 becomes essential. This study aimed to characterize porcine IZUMO1 protein under three different physiological states: sperm-rich fraction (SRF), 1-h capacitated sperm selected by swim-up (CS), and induced acrosome reaction in 1-h capacitated sperm (ARS). The immunolocalization of IZUMO1 and acrosome status of fifteen fertile boars was assessed by confocal microscopy. Additionally, six males were subjected to a more detailed examination via quantitative proteomic analysis by LC-MS/MS. Fluorescence results revealed four distinct IZUMO1 distribution patterns: pattern 1 (P1) characterized by speckled staining in the pre-equatorial subdomain and postacrosomal domain, pattern 2 (P2) displaying strong apical ridge staining with speckled staining in the pre-equatorial subdomain and postacrosomal domain, pattern 3 (P3) exhibiting speckled staining in the postacrosomal domain, and pattern 4 (P4) without labelling. In the SRF sperm, IZUMO1 was predominantly distributed between staining patterns P1 and P2 (∼50%). As a result of the capacitation, there was a significant decrease in P1. Conversely, in ARS, IZUMO1 was dominantly distributed in P3 51.55% and P4 24.25%. The quantitative study of the IZUMO1 protein supported these findings. With those results and compared with our previous work in human, here we propose a working model of IZUMO1 migration dependent on the morphology and subdomains of the sperm head.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.