Bioinspired piezoelectric patch design for sonodynamic therapy: a preclinical mechanistic evaluation of rotator cuff repair and functional regeneration.
IF 4.8 3区 工程技术Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Bioinspired piezoelectric patch design for sonodynamic therapy: a preclinical mechanistic evaluation of rotator cuff repair and functional regeneration.","authors":"Rui Shi, Fei Liu, Qihuang Qin, Pinxue Li, Ziqi Huo, You Zhou, Chunyan Jiang","doi":"10.3389/fbioe.2025.1565347","DOIUrl":null,"url":null,"abstract":"<p><strong>Indroduction: </strong>The rotator cuff tendon-bone interface exhibits a gradient histological composition, including graded mineral content and interwoven collagen fibers. Following rotator cuff injury repair, the lack of a compositional, structural, and functional gradient at the interface results in stress concentration and a high rate of postoperative re-tears. Piezoelectric materials, known for modulating cellular functions and promoting stem cell proliferation and differentiation, have garnered increasing attention in tissue repair applications.</p><p><strong>Methods: </strong>In this study, a biomimetic piezoelectric patch with progressive compositional and structural variations was designed and fabricated. The patch, composed of gelatin/PLGA/nHA/BTO, integrates aligned and random fiber structures. The aligned layer mimics the tendon-side structure of the rotator cuff tendon-bone interface, while the random layer replicates the bone-side structure.</p><p><strong>Results: </strong>The bioinspired patch exhibits excellent biocompatibility. The piezoelectric signals generated under ultrasound stimulation can induce osteogenic and tenogenic differentiation of stem cells, as well as regulate M2 polarization of macrophages, thereby promoting the repair and regeneration of supraspinatus tendon injury in a rabbit model of rotator cuff injury.</p><p><strong>Discussion: </strong>This study highlights the potential of biomimetic piezoelectric patches in orthopedic rotator cuff repair and offers new possibilities for developing advanced materials to regenerate the rotator cuff tendon-bone interface.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1565347"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133869/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1565347","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Indroduction: The rotator cuff tendon-bone interface exhibits a gradient histological composition, including graded mineral content and interwoven collagen fibers. Following rotator cuff injury repair, the lack of a compositional, structural, and functional gradient at the interface results in stress concentration and a high rate of postoperative re-tears. Piezoelectric materials, known for modulating cellular functions and promoting stem cell proliferation and differentiation, have garnered increasing attention in tissue repair applications.
Methods: In this study, a biomimetic piezoelectric patch with progressive compositional and structural variations was designed and fabricated. The patch, composed of gelatin/PLGA/nHA/BTO, integrates aligned and random fiber structures. The aligned layer mimics the tendon-side structure of the rotator cuff tendon-bone interface, while the random layer replicates the bone-side structure.
Results: The bioinspired patch exhibits excellent biocompatibility. The piezoelectric signals generated under ultrasound stimulation can induce osteogenic and tenogenic differentiation of stem cells, as well as regulate M2 polarization of macrophages, thereby promoting the repair and regeneration of supraspinatus tendon injury in a rabbit model of rotator cuff injury.
Discussion: This study highlights the potential of biomimetic piezoelectric patches in orthopedic rotator cuff repair and offers new possibilities for developing advanced materials to regenerate the rotator cuff tendon-bone interface.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.