BUBR1 Facilitated Nerve Regeneration by Modulating STAT3 Phosphorylation, Thereby Alleviating HIE in Neonatal Mice.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Shuting Chang, Weiqing Huang, Guinan Li, Mi Zhang, Xionghui Wu
{"title":"BUBR1 Facilitated Nerve Regeneration by Modulating STAT3 Phosphorylation, Thereby Alleviating HIE in Neonatal Mice.","authors":"Shuting Chang, Weiqing Huang, Guinan Li, Mi Zhang, Xionghui Wu","doi":"10.1002/cbin.70033","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxic-ischemic encephalopathy (HIE) represents a leading cause of morbidity and mortality among neonates. However, the underlying molecular mechanisms of HIE remain largely elusive. A HIE animal model was established, and neural stem cells (NSCs) underwent oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic HIE in vitro. The HIE-induced brain injury was evaluated using a battery of assessments, including the Morris water maze test, wire hanging test, cylinder test, TTC, TUNEL, IHC, and IF staining. Subsequently, the expressions of budding uninhibited by benzimidazoles related 1 (BUBR1) and signal transducer and activator of transcription 3 (STAT3) were examined using immunoblotting and qRT-PCR. Furthermore, the interaction between BUBR1 and STAT3 was confirmed through co-immunoprecipitation assays. BUBR1 was observed to be downregulated in both the HIE model and in NSCs subjected to OGD/R. Notably, the restoration of BUBR1 expression was found to alleviate the detrimental effects of HIE, primarily by facilitating nerve regeneration. Further investigation revealed that BUBR1 also mitigated OGD/R-induced apoptosis in NSCs. Mechanistically, BUBR1 was shown to regulate the phosphorylation of STAT3, a crucial transcription factor involved in cell survival and regeneration. Moreover, BUBR1 alleviated OGD/R-induced apoptosis of NSCs and promoted nerve regeneration to protect HIE by regulating STAT3 phosphorylation. BUBR1 facilitated nerve regeneration by modulating STAT3 phosphorylation, thereby alleviating HIE.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbin.70033","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hypoxic-ischemic encephalopathy (HIE) represents a leading cause of morbidity and mortality among neonates. However, the underlying molecular mechanisms of HIE remain largely elusive. A HIE animal model was established, and neural stem cells (NSCs) underwent oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic HIE in vitro. The HIE-induced brain injury was evaluated using a battery of assessments, including the Morris water maze test, wire hanging test, cylinder test, TTC, TUNEL, IHC, and IF staining. Subsequently, the expressions of budding uninhibited by benzimidazoles related 1 (BUBR1) and signal transducer and activator of transcription 3 (STAT3) were examined using immunoblotting and qRT-PCR. Furthermore, the interaction between BUBR1 and STAT3 was confirmed through co-immunoprecipitation assays. BUBR1 was observed to be downregulated in both the HIE model and in NSCs subjected to OGD/R. Notably, the restoration of BUBR1 expression was found to alleviate the detrimental effects of HIE, primarily by facilitating nerve regeneration. Further investigation revealed that BUBR1 also mitigated OGD/R-induced apoptosis in NSCs. Mechanistically, BUBR1 was shown to regulate the phosphorylation of STAT3, a crucial transcription factor involved in cell survival and regeneration. Moreover, BUBR1 alleviated OGD/R-induced apoptosis of NSCs and promoted nerve regeneration to protect HIE by regulating STAT3 phosphorylation. BUBR1 facilitated nerve regeneration by modulating STAT3 phosphorylation, thereby alleviating HIE.

BUBR1通过调节STAT3磷酸化促进神经再生,从而减轻新生小鼠HIE。
缺氧缺血性脑病(HIE)是新生儿发病和死亡的主要原因。然而,HIE的潜在分子机制在很大程度上仍然难以捉摸。建立HIE动物模型,对神经干细胞(NSCs)进行氧-葡萄糖剥夺/再氧化(OGD/R)模拟体外HIE。采用Morris水迷宫试验、吊丝试验、圆筒试验、TTC、TUNEL、IHC和IF染色等评价方法对hie脑损伤进行评价。随后,利用免疫印迹和qRT-PCR检测不受苯并咪唑相关出芽1 (BUBR1)和转录信号传导激活因子3 (STAT3)的表达。此外,通过共免疫沉淀实验证实了BUBR1和STAT3之间的相互作用。在HIE模型和OGD/R的NSCs中均观察到BUBR1下调。值得注意的是,BUBR1表达的恢复主要通过促进神经再生来减轻HIE的有害影响。进一步的研究表明,BUBR1还能减轻OGD/ r诱导的NSCs凋亡。从机制上讲,BUBR1被证明可以调节STAT3的磷酸化,STAT3是参与细胞存活和再生的关键转录因子。BUBR1通过调节STAT3磷酸化,减轻OGD/ r诱导的NSCs凋亡,促进神经再生,保护HIE。BUBR1通过调节STAT3磷酸化促进神经再生,从而减轻HIE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biology International
Cell Biology International 生物-细胞生物学
CiteScore
7.60
自引率
0.00%
发文量
208
审稿时长
1 months
期刊介绍: Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect. These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信