Ting Gong, Wen Zhao, Youqiang Chen, Youqian He, Jie Xiong, Yijun Xiong, Liu Yin, Yong Luo, Yi Tang
{"title":"Genetically engineered bacteria-based nanocomposite synergistic HIFU for tumor therapy by changing the acoustic environment of tumor tissues.","authors":"Ting Gong, Wen Zhao, Youqiang Chen, Youqian He, Jie Xiong, Yijun Xiong, Liu Yin, Yong Luo, Yi Tang","doi":"10.1186/s12935-025-03833-8","DOIUrl":null,"url":null,"abstract":"<p><p>High-intensity focused ultrasound (HIFU) is a novel non-invasive technique with tremendous potential applications. However, ensuring effectiveness and safety of HIFU therapy remains a substantial challenge. Changing the acoustic environment of tumor tissues is an emerging way to solve this problem. In this study, we successfully constructed a bacteria-based nanocomposite, consisting genetically engineered bacteria (GVs-E.coli) and perfluorohexane/poly(lactic-co-glycolic acid) (PFH/PLGA) nanoparticles, which is denoted as GVs-E@PP NPs. We demonstrated that GVs-E@PP NPs could selectively target and proliferate in the tumor sites, and enhance the efficacy of HIFU therapy by changing the acoustic environment of tumor tissues. Specifically, they induced an increase in collagen fibers, elastic modulus, sound velocity and sound attenuation within tumor tissues, while simultaneously reducing tumor angiogenesis. These comprehensive changes facilitated the therapeutic efficacy of HIFU treatment. In summary, this approach represents an innovative therapeutic strategy to enhance HIFU synergy in tumor treatment.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"201"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135489/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03833-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High-intensity focused ultrasound (HIFU) is a novel non-invasive technique with tremendous potential applications. However, ensuring effectiveness and safety of HIFU therapy remains a substantial challenge. Changing the acoustic environment of tumor tissues is an emerging way to solve this problem. In this study, we successfully constructed a bacteria-based nanocomposite, consisting genetically engineered bacteria (GVs-E.coli) and perfluorohexane/poly(lactic-co-glycolic acid) (PFH/PLGA) nanoparticles, which is denoted as GVs-E@PP NPs. We demonstrated that GVs-E@PP NPs could selectively target and proliferate in the tumor sites, and enhance the efficacy of HIFU therapy by changing the acoustic environment of tumor tissues. Specifically, they induced an increase in collagen fibers, elastic modulus, sound velocity and sound attenuation within tumor tissues, while simultaneously reducing tumor angiogenesis. These comprehensive changes facilitated the therapeutic efficacy of HIFU treatment. In summary, this approach represents an innovative therapeutic strategy to enhance HIFU synergy in tumor treatment.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.